Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 25(3): 247-59, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11208017

ABSTRACT

Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.


Subject(s)
Adaptation, Physiological/genetics , Cold Temperature , Glycine max/genetics , Heat-Shock Proteins/physiology , Plant Proteins , Plants, Genetically Modified/physiology , Transcription Factors/physiology , Zinc Fingers , Abscisic Acid/pharmacology , Amino Acid Sequence , Base Sequence , Cell Nucleus/metabolism , DNA Primers , Gene Expression Regulation, Plant/drug effects , Genes, Reporter , Glucuronidase/genetics , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/genetics , Molecular Sequence Data , Plants, Genetically Modified/genetics , Sequence Homology, Amino Acid , Transcription Factors/chemistry , Transcription Factors/genetics , Transcriptional Activation
2.
FEBS Lett ; 486(2): 103-6, 2000 Dec 08.
Article in English | MEDLINE | ID: mdl-11113447

ABSTRACT

Possible functions that have been proposed for the plant 1Cys-peroxiredoxin, include activity as a dormancy regulator and as an antioxidant. The transcript level of rice 1Cys-peroxiredoxin (R1C-Prx) rapidly decreased after imbibition of rice seeds, but the protein was detected for 15 days after imbibition. To investigate the function of this protein, we generated transgenic tobacco plants constitutively expressing the R1C-Prx gene. The transgenic R1C-Prx plants showed a germination frequency similar to control plants. However, the transgenic lines exhibited higher resistance against oxidative stress, suggesting that antioxidant activity may be its primary function.


Subject(s)
Antioxidants , Oryza/enzymology , Peroxidases/physiology , Animals , Gene Expression , Germination/physiology , Oryza/genetics , Oryza/physiology , Oxidative Stress , Peroxidases/genetics , Peroxiredoxins , Plants, Genetically Modified , Plants, Toxic , Rabbits , Seeds/physiology , Nicotiana
3.
Plant Cell ; 12(8): 1393-407, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10948258

ABSTRACT

Ca(2)+-ATPases are key regulators of Ca(2+) ion efflux in all eukaryotes. Animal cells have two distinct families of Ca(2+) pumps, with calmodulin-stimulated pumps (type IIB pumps) found exclusively at the plasma membrane. In plants, no equivalent type IIB pump located at the plasma membrane has been identified at the molecular level, although related isoforms have been identified in non-plasma membrane locations. Here, we identify a plant cDNA, designated SCA1 (for soybean Ca(2+)-ATPase 1), that encodes Ca(2+)-ATPase and is located at the plasma membrane. The plasma membrane localization was determined by sucrose gradient and aqueous two-phase membrane fractionations and was confirmed by the localization of SCA1p tagged with a green fluorescent protein. The Ca(2+)-ATPase activity of the SCA1p was increased approximately sixfold by calmodulin (K(1/2) approximately 10 nM). Two calmodulin binding sequences were identified in the N-terminal domain. An N-terminal truncation mutant that deletes sequence through the two calmodulin binding sites was able to complement a yeast mutant (K616) that was deficient in two endogenous Ca(2+) pumps. Our results indicate that SCA1p is structurally distinct from the plasma membrane-localized Ca(2+) pump in animal cells, belonging instead to a novel family of plant type IIB pumps found in multiple subcellular locations. In plant cells from soybean, expression of this plasma membrane pump was highly and rapidly induced by salt (NaCl) stress and a fungal elicitor but not by osmotic stress.


Subject(s)
Calcium-Transporting ATPases/metabolism , Calmodulin/pharmacology , Cell Membrane/enzymology , Glycine max/enzymology , Amino Acid Motifs , Amino Acid Sequence , Binding Sites , Calcium/pharmacology , Calcium-Transporting ATPases/chemistry , Calcium-Transporting ATPases/genetics , Calmodulin/metabolism , Cell Fractionation , Cell Membrane/drug effects , Cloning, Molecular , Enzyme Activation/drug effects , Genetic Complementation Test , Molecular Sequence Data , Organ Specificity , Osmolar Concentration , Protein Structure, Tertiary , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Plant/analysis , RNA, Plant/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Salts/pharmacology , Sequence Alignment , Sequence Deletion/genetics , Glycine max/cytology , Glycine max/drug effects , Yeasts/cytology , Yeasts/genetics , Yeasts/metabolism
4.
Mol Plant Microbe Interact ; 13(4): 470-4, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10755311

ABSTRACT

In order to study molecular interactions that occur between rice and rice blast fungus upon infection, we isolated fungal elicitor-responsive genes from rice (Oryza sativa cv. Milyang 117) suspension-cultured cells treated with fungal elicitor prepared from the rice blast fungus (Magnaporthe grisea) employing a method that combined mRNA differential display and cDNA library screening. Data base searches with the isolated cDNA clones revealed that the OsERG1 and OsERG2 cDNAs share significant similarities with the mammalian Ca2+-dependent lipid binding (C2) domains. The OsCPX1 cDNA is highly homologous to peroxidases. The OsHin1 cDNA exhibits homology to the tobacco hin1 gene, whose expression is induced by avirulent pathogens. The OsLPL1 and OsMEK1 cDNAs share homologies with lysophospholipases and serine/threonine mitogen-activated protein (MAP) kinase kinases, respectively. The OsWRKY1 and OsEREBP1 cDNAs are homologous to transcription factors, such as the WRKY protein family and the AP2/EREBP family, respectively. Transcripts of the OsERG1, OsHin1, and OsMEK1 genes were specifically elevated only in response to the avirulent race KJ301 of the rice blast fungus. Our study yielded a number of elicitor-responsive genes that will not only provide molecular probes, but also contribute to our understanding of host defense mechanisms against the rice blast fungus.


Subject(s)
Magnaporthe/pathogenicity , Oryza/metabolism , Plant Proteins/metabolism , RNA, Plant/metabolism , Signal Transduction/genetics , Blotting, Northern , Cells, Cultured , Oryza/microbiology , Plant Proteins/analysis , RNA, Messenger/analysis , RNA, Plant/analysis , Virulence
5.
Plant Mol Biol ; 33(6): 1025-35, 1997 Apr.
Article in English | MEDLINE | ID: mdl-9154984

ABSTRACT

Two new members (Bsar1a and Bsar1b) of the Sar1 gene family have been identified from a flower bud cDNA library of Brassica campestris and their functional characteristics were analyzed. The two clones differ from each other at 14 positions of the 193 amino acid residues deduced from their coding region. The amino acid sequences of Bsar1a and Bsar1b are most closely related to the Sar1 family, genes that function early in the process of vesicle budding from the endoplasmic reticulum (ER). The sequences contain all the conserved motifs of the Ras superfamily (G1-G4 motifs) as well as the distinctive structural feature near the C-terminus that is Sar1 specific. Our phylogenetic analysis confirmed that these two clones can indeed be considered members of the Sar1 family and that they have a close relationship to the ARF family. The Bsar1 proteins, expressed in Escherichia coli, cross-reacted with a polyclonal antibody prepared against Saccharomyces cerevisiae Sar1 protein. It also exhibited GTP-binding activity. Genomic Southern blot analysis, using the 3'-gene-specific regions of the Bsar1 cDNAs as probes, revealed that the two cDNA clones are members of a B. campestris Sar1 family that consists of 2 to 3 genes. RNA blot analysis, using the same gene-specific probes, showed that both genes are expressed with similar patterns in most tissues of the plant, including leaf, stem, root, and flower buds. Furthermore, when we placed the two Bsar1 genes under the control of the yeast pGK1 promoter into the temperature-sensitive mutant yeast strain S. cerevisiae Sec12-1, they suppressed the mutation which consists of a defect in vesicle transport. The amino acid sequence similarity, the GTP-binding activity, and the functional suppression of the yeast mutation suggest that the Bsar1 proteins are functional homologues of the Sar1 protein in S. cerevisiae and that they may perform similar biological functions.


Subject(s)
Brassica/genetics , Fungal Proteins/genetics , GTP-Binding Proteins/genetics , Genes, Plant/genetics , Membrane Glycoproteins/genetics , Monomeric GTP-Binding Proteins , Saccharomyces cerevisiae Proteins , Suppression, Genetic , Amino Acid Sequence , Base Sequence , Biological Transport , Cloning, Molecular , Endoplasmic Reticulum , Escherichia coli/genetics , GTP-Binding Proteins/metabolism , GTP-Binding Proteins/physiology , Guanine Nucleotide Exchange Factors , Guanosine Triphosphate/metabolism , Molecular Sequence Data , Multigene Family/genetics , Mutation , Protein Binding , RNA, Messenger/analysis , RNA, Plant/analysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid , Temperature , Vesicular Transport Proteins
6.
J Biol Chem ; 272(14): 9252-9, 1997 Apr 04.
Article in English | MEDLINE | ID: mdl-9083059

ABSTRACT

NAD kinase is a Ca2+/calmodulin (CaM)-dependent enzyme capable of converting cellular NAD to NADP. The enzyme purified from pea seedlings can be activated by highly conserved soybean CaM, SCaM-1, but not by the divergent soybean CaM isoform, SCaM-4 (Lee, S. H., Kim, J. C., Lee, M. S., Heo, W. D., Seo, H. Y., Yoon, H. W., Hong, J. C., Lee, S. Y., Bahk, J. D., Hwang, I., and Cho, M. J. (1995) J. Biol. Chem. 270, 21806-21812). To determine which domains were responsible for this differential activation of NAD kinase, a series of chimeric SCaMs were generated by exchanging functional domains between SCaM-4 and SCaM-1. SCaM-4111, a chimeric SCaM-1 that contains the first domain of SCaM-4, was severely impaired (only 40% of maximal) in its ability to activate NAD kinase. SCaM-1444, a chimeric SCaM-4 that contains the first domain of SCaM-1 exhibited nearly full ( approximately 70%) activation of NAD kinase. Only chimeras containing domain I of SCaM-1 produced greater than half-maximal activation of NAD kinase. To define the amino acid residue(s) in domain I that were responsible for this differential activation, seven single residue substitution mutants of SCaM-1 were generated and tested for NAD kinase activation. Among these mutants, only K30E and G40D showed greatly reduced NAD kinase activation. Also a double residue substitution mutant, K30E/G40D, containing these two mutations in combination was severely impaired in its NAD kinase-activating potential, reaching only 20% of maximal activation. Furthermore, a triple mutation, K30E/M36I/G40D, completely abolished NAD kinase activation. Thus, our data suggest that domain I of CaM plays a key role in the differential activation of NAD kinase exhibited by SCaM-1 and SCaM-4. Further, the residues Lys30 and Glu40 of SCaM-1 are critical for this function.


Subject(s)
Calmodulin/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Plant Proteins/metabolism , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Amino Acid Sequence , Calmodulin/chemistry , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Models, Molecular , Molecular Sequence Data , NADP/metabolism , Plant Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Structure-Activity Relationship
7.
Plant Physiol ; 111(2): 577-88, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8787028

ABSTRACT

We randomly selected and partially sequenced cDNA clones from a library of Chinese cabbage (Brassica campestris L. ssp. pekinensis) flower bud cDNAs. Out of 1216 expressed sequence tags (ESTs), 904 cDNA clones were unique or nonredundant. Five hundred eighty-eight clones (48.4%) had sequence homology to functionally defined genes at the peptide level. Only 5 clones encoded known flower-specific proteins. Among the cDNAs with no similarity to known protein sequences (628), 184 clones had significant similarity to nucleotide sequences registered in the databases. Among these 184 clones, 142 exhibited similarities at the nucleotide level only with plant ESTs. Also, sequence similarities were evident between these 142 ESTs and their matching ESTs when compared using the deduced amino acid sequences. Therefore, it is possible that the anonymous ESTs encode plant-specific ubiquitous proteins. Our extensive EST analysis of genes expressed in floral organs not only contributes to the understanding of the dynamics of genome expression patterns in floral organs but also adds data to the repertoire of all genomic genes.


Subject(s)
DNA, Complementary/genetics , DNA, Plant/genetics , Gene Expression , Vegetables/genetics , Cloning, Molecular , Gene Library , Genes, Plant , Molecular Sequence Data
8.
Plant Mol Biol ; 30(2): 373-9, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8616262

ABSTRACT

A cDNA encoding a new phytocystatin isotype named BCPI-1 was isolated from a cDNA library of Chinese cabbage flower buds. The BCPI-1 clone encodes 199 amino acids resulting in a protein much larger than other known phytocystatins. BCPI-1 has an unusually long C-terminus. A BCPI-1 fusion protein expressed in Escherichia coli strongly inhibits the enzymatic activity of papain, a cysteine proteinase. Genomic Southern blot analysis revealed that the BCPI gene is a member of a small multi-gene family in Chinese cabbage. Northern blot analysis showed that it is differentially expressed in the flower bud, leaf and root.


Subject(s)
Brassica/genetics , Cysteine Proteinase Inhibitors/genetics , Plant Proteins/genetics , Amino Acid Sequence , Base Sequence , Cysteine Proteinase Inhibitors/biosynthesis , Cysteine Proteinase Inhibitors/pharmacology , DNA, Complementary/genetics , Escherichia coli/genetics , Gene Dosage , Genes, Plant , Molecular Sequence Data , Multigene Family , Papain/antagonists & inhibitors , Plant Proteins/biosynthesis , Plant Proteins/pharmacology , Plant Shoots , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/pharmacology , Sequence Analysis, DNA , Sequence Homology, Amino Acid
9.
Plant Mol Biol ; 26(6): 1975-9, 1994 Dec.
Article in English | MEDLINE | ID: mdl-7858231

ABSTRACT

Two cDNA clones encoding two different beta-tubulins, RTUB-1 and RTUB-2, were isolated from a rice cDNA library and their nucleotide sequences were analyzed. The deduced amino acid sequences showed amino acid sequence identity between 92% and 97% with other plant beta-tubulins. Southern blot analysis using gene-specific and coding-region probes suggested that beta-tubulins in rice are encoded by multigene families. The two cDNA clones represent two subfamilies of rice tubulins, RTUB-1 and RTUB-2, consisting of 3 to 4 genes and a single gene, respectively. The transcript levels of RTUB-1 and RTUB-2 genes were higher in actively elongating tissues such as etiolated shoot tissues and light-grown root tissues of four-day old seedlings.


Subject(s)
Genes, Plant/genetics , Multigene Family/genetics , Oryza/genetics , Plant Proteins/genetics , Tubulin/genetics , Amino Acid Sequence , Blotting, Southern , DNA, Complementary/genetics , Light , Molecular Sequence Data , Oryza/growth & development , Oryza/radiation effects , RNA, Messenger/analysis , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...