Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 53(1): 215-9, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24259233

ABSTRACT

Using IR spectroscopy, high-pressure reactions of molecules were observed in liquids entrapped by graphene nanobubbles formed at the graphene-diamond interface. Nanobubbles formed on graphene as a result of thermally induced bonding of its edges with diamond are highly impermeable, thus providing a good sealing of solvents within. Owing to the optical transparency of graphene and diamond, high-pressure chemical reactions within the bubbles can be probed with vibrational spectroscopy. By monitoring the conformational changes of pressure-sensitive molecules, the pressure within the nanobubble can be calibrated as a function of temperature and it is about 1 GPa at 600 K. The polymerization of buckministerfullerene (C60 ), which is symmetrically forbidden under ambient conditions, is observed to proceed in well-defined stages in the pressurized nanobubbles.

2.
Nat Commun ; 4: 1556, 2013.
Article in English | MEDLINE | ID: mdl-23462999

ABSTRACT

The hardness and virtual incompressibility of diamond allow it to be used in high-pressure anvil cell. Here we report a new way to generate static pressure by encapsulating single-crystal diamond with graphene membrane, the latter is well known for its superior nano-indentation strength and in-plane rigidity. Heating the diamond-graphene interface to the reconstruction temperature of diamond (~1,275 K) produces a high density of graphene nanobubbles that can trap water. At high temperature, chemical bonding between graphene and diamond is robust enough to allow the hybrid interface to act as a hydrothermal anvil cell due to the impermeability of graphene. Superheated water trapped within the pressurized graphene nanobubbles is observed to etch the diamond surface to produce a high density of square-shaped voids. The molecular structure of superheated water trapped in the bubble is probed using vibrational spectroscopy and dynamic changes in the hydrogen-bonding environment are observed.

3.
J Am Chem Soc ; 133(27): 10490-8, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21639111

ABSTRACT

A critical bottleneck for the widespread use of single layer graphene is the absence of a facile method of chemical modification which does not diminish the outstanding properties of the two-dimensional sp(2) network. Here, we report on the direct chemical modification of graphene by photopolymerization with styrene. We demonstrate that photopolymerization occurs at existing defect sites and that there is no detectable disruption of the basal plane conjugation of graphene. This method thus offers a route to define graphene functionality without degrading its electronic properties. Furthermore, we show that photopolymerization with styrene results in self-organized intercalative growth and delamination of few layer graphene. Under these reaction conditions, we find that a range of other vinyl monomers exhibits no reactivity with graphene. However, we demonstrate an alternative route by which the surface reactivity can be precisely tuned, and these monomers can be locally grafted via electron-beam-induced carbon deposition on the graphene surface.


Subject(s)
Graphite/chemistry , Photochemical Processes , Polymerization , Styrene/chemistry , Copper/chemistry , Microscopy, Atomic Force , Surface Properties
4.
ACS Nano ; 5(2): 888-96, 2011 Feb 22.
Article in English | MEDLINE | ID: mdl-21275382

ABSTRACT

The electronic properties of graphene sheets and nanoribbons with different degrees of hydrogenation have been investigated using a combination of charge transport and Raman spectroscopy experiments. The field-effect transistor mobility of graphene is shown to be highly sensitive to the treatment time during atomic hydrogen dose and follows an exponential decrease with time. Raman spectroscopy demonstrates linearly increasing defect-band intensity, and when considered together with transport data, the relationship between graphene mobility and the crystalline size of intact sp(2) carbon regions can be derived. Further, the increase in width of the voltage plateau for monolayer and bilayer graphene points to the formation of midgap states. For partially hydrogenated graphene, the temperature-dependent transport in these states shows a weak insulating behavior. A comparison of Raman spectrum and conductivity data of partially hydrogenated monolayer and bilayer graphene suggests that the latter is also quite susceptible to adsorption of hydrogen atoms, despite a stiffer lattice structure.

5.
ACS Nano ; 4(12): 7387-94, 2010 Dec 28.
Article in English | MEDLINE | ID: mdl-21067155

ABSTRACT

The electronic properties of graphene can be modulated by charged lipid bilayer adsorbing on the surface. Biorecognition events which lead to changes in membrane integrity can be monitored electrically using an electrolyte-gated biomimetic membrane-graphene transistor. Here, we demonstrate that the bactericidal activity of antimicrobial peptides can be sensed electrically by graphene based on a complex interplay of biomolecular doping and ionic screening effect.


Subject(s)
Biomimetic Materials/chemistry , Electrons , Graphite/chemistry , Lipid Bilayers/chemistry , Amino Acid Sequence , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Biosensing Techniques , Cell Membrane/chemistry , Cell Membrane/drug effects , Gram-Negative Bacteria/cytology , Gram-Negative Bacteria/drug effects , Molecular Sequence Data , Surface Properties , Transistors, Electronic
SELECTION OF CITATIONS
SEARCH DETAIL
...