Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(5)2024 May 11.
Article in English | MEDLINE | ID: mdl-38785716

ABSTRACT

Electroporation is pivotal in bioelectrochemistry for cellular manipulation, with prominent applications in drug delivery and cell membrane studies. A comprehensive understanding of pore generation requires an in-depth analysis of the critical pore size and the corresponding energy barrier at the onset of cell rupture. However, many studies have been limited to basic models such as artificial membranes or theoretical simulations. Challenging this paradigm, our study pioneers using a microfluidic electroporation chip array. This tool subjects live breast cancer cell species to a diverse spectrum of alternating current electric field conditions, driving electroporation-induced cell rupture. We conclusively determined the rupture voltages across varying applied voltage loading rates, enabling an unprecedented characterization of electric cell rupture dynamics encompassing critical pore radius and energy barrier. Further bolstering our investigation, we probed cells subjected to cholesterol depletion via methyl-ß-cyclodextrin and revealed a strong correlation with electroporation. This work not only elucidates the dynamics of electric rupture in live cell membranes but also sets a robust foundation for future explorations into the mechanisms and energetics of live cell electroporation.


Subject(s)
Cell Membrane , Electroporation , Humans , Cell Membrane/metabolism , Microfluidics , Cell Line, Tumor , beta-Cyclodextrins , Cholesterol , Lab-On-A-Chip Devices , Breast Neoplasms
2.
Biomed Pharmacother ; 172: 116226, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301421

ABSTRACT

Alzheimer's disease (AD) is characterized by the presence of two critical pathogenic factors: amyloid-ß (Aß) and tau. Aß and tau become neurotoxic aggregates via self-assembly, and these aggregates contribute to the pathogenesis of AD. Therefore, there has been growing interest in therapeutic strategies that simultaneously target Aß and tau aggregates. Although neferine has attracted attention as a suitable candidate agent for alleviating AD pathology, there has been no study investigating whether neferine affects the modulation of Aß or tau aggregation/dissociation. Herein, we investigated the dual regulatory effects of neferine on Aß and tau aggregation/dissociation. We predicted the binding characteristics of neferine to Aß and tau using molecular docking simulations. Next, thioflavin T and atomic force microscope analyses were used to evaluate the effects of neferine on the aggregation or dissociation of Aß42 and tau K18. We verified the effect of neferine on Aß fibril degradation using a microfluidic device. In addition, molecular dynamics simulation was used to predict a conformational change in the Aß42-neferine complex. Moreover, we examined the neuroprotective effect of neferine against neurotoxicity induced by Aß and tau and their fibrils in HT22 cells. Finally, we foresaw the pharmacokinetic properties of neferine. These results demonstrated that neferine, which has attracted attention as a potential treatment for AD, can directly affect Aß and tau pathology.


Subject(s)
Alzheimer Disease , Benzylisoquinolines , Neurotoxicity Syndromes , Humans , Molecular Docking Simulation , Amyloid beta-Peptides , Alzheimer Disease/drug therapy , Lab-On-A-Chip Devices , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...