Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 23(22): 28341-8, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26561104

ABSTRACT

We theoretically propose an air-core erbium doped fiber amplifier capable of providing relatively uniform gain for 12 orbital angular momentum (OAM) modes (|L| = 5, 6 and 7, where |L| is the OAM mode order) over the C-band. Amplifier performance under core pumping conditions for a uniformly doped core for each of the supported pump modes (110 in total) was separately assessed. The differential modal gain (DMG) was found to vary significantly depending on the pump mode used, and the minimum DMG was found to be 0.25 dB at 1550 nm provided by the OAM (8,1) pump mode. A tailored confined doping profile can help to reduce the pump mode dependency for core pumped operation and help to increase the number of pump modes that can support a DMG below 1 dB. For the more practical case of cladding-pumped operation, where the pump mode dependency is almost removed, a DMG of 0.25 dB and a small signal gain of >20 dB can be achieved for the 12 OAM modes across the full C-band.

2.
Opt Express ; 22(18): 21499-507, 2014 Sep 08.
Article in English | MEDLINE | ID: mdl-25321528

ABSTRACT

We employ a Genetic Algorithm for the purpose of minimization of the maximum differential modal gain (DMG) over all the supported signal modes (at the same wavelength) of cladding-pumped four-mode and six-mode-group EDFAs. The optimal EDFA designs found through the algorithm provide less than 1 dB DMG across the C-band (1530-1565 nm) whilst achieving more than 20 dB gain per mode. We then analyze the sensitivity of the DMG to small variations from the optimal value of the erbium doping concentration and the structural parameters, and estimate the fabrication tolerance for reliable amplifier performance.

3.
Opt Express ; 20(19): 20835-43, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037207

ABSTRACT

We experimentally validate a numerical model to study multimode erbium-doped fiber amplifiers (MM-EDFAs). Using this model, we demonstrate the improved performance achievable in a step index MM-EDFA incorporating a localized erbium doped ring and its potential for Space Division Multiplexed (SDM) transmission. Using a pure LP01 pump beam, which greatly simplifies amplifier construction, accurate modal gain control can be achieved by carefully tuning the thickness of the ring-doped layer in the active fiber and the pump power. In particular, by optimizing the erbium-ring-doped structure and the length of active fiber used, over 20dB gain for both LP01 and LP11 signals with a maximum gain difference of around 2 dB across the C band are predicted for a pure LP01 pump beam delivering 250 mW power at 980 nm.

4.
Opt Express ; 20(17): 18803-18, 2012 Aug 13.
Article in English | MEDLINE | ID: mdl-23038520

ABSTRACT

We have demonstrated and compared high-energy, in-band pumped erbium doped fiber amplifiers operating at 1562.5 nm under both a core pumping scheme (CRS) and a cladding pumping scheme (CLS). The CRS/CLS sources generated smooth, single-peak pulses with maximum pulse energies of ~1.53/1.50 mJ, and corresponding pulse widths of ~176/182 ns respectively, with an M2 of ~1.6 in both cases. However, the conversion efficiency for the CLS was >1.5 times higher than the equivalent CRS variant operating at the same pulse energy due to the lower pump intensity in the CLS that mitigates the detrimental effects of ion concentration quenching. With a longer fiber length in a CLS implementation a pulse energy of ~2.6 mJ is demonstrated with a corresponding M2 of ~4.2. Using numerical simulations we explain that the saturation of pulse energy observed in our experiments is due to saturation of the pump absorption.


Subject(s)
Amplifiers, Electronic , Fiber Optic Technology/instrumentation , Lasers, Solid-State , Energy Transfer , Equipment Design , Equipment Failure Analysis
5.
Opt Express ; 20(13): 13886-95, 2012 Jun 18.
Article in English | MEDLINE | ID: mdl-22714454

ABSTRACT

A highly efficient (~80%), high power (18.45 W) in-band, core pumped erbium/ytterbium co-doped fiber laser is demonstrated. To the best of our knowledge, this is the highest reported efficiency from an in-band pumped 1.5 µm fiber laser operating in the tens of watts regime. Using a fitted simulation model, we show that the significantly sub-quantum limit conversion efficiency of in-band pumped erbium doped fiber amplifiers observed experimentally can be explained by concentration quenching. We then numerically study and experimentally validate the optimum pumping configuration for power scaling of in-band, cladding pumped erbium doped fiber amplifiers. Our simulation results indicate that a ~77% power conversion efficiency with high output power should be possible through cladding pumping of current commercially available pure Erbium doped active fibers providing the loss experienced by the cladding guided 1535 nm pump due to the coating absorption can be reduced to an acceptable level by better coating material choice. The power conversion efficiency has the potential to exceed 90% if concentration quenching of erbium ions can be reduced via improvements in fiber design and fabrication.


Subject(s)
Amplifiers, Electronic , Lasers, Solid-State , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Lasers, Dye
SELECTION OF CITATIONS
SEARCH DETAIL
...