Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 6: 27531, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27277538

ABSTRACT

The malaria parasite Plasmodium falciparum relies on efficient protein translation. An essential component of translation is the tryptophanyl-tRNA synthetase (TrpRS) that charges tRNA(trp). Here we characterise two isoforms of TrpRS in Plasmodium; one eukaryotic type localises to the cytosol and a bacterial type localises to the remnant plastid (apicoplast). We show that the apicoplast TrpRS aminoacylates bacterial tRNA(trp) while the cytosolic TrpRS charges eukaryotic tRNA(trp). An inhibitor of bacterial TrpRSs, indolmycin, specifically inhibits aminoacylation by the apicoplast TrpRS in vitro, and inhibits ex vivo Plasmodium parasite growth, killing parasites with a delayed death effect characteristic of apicoplast inhibitors. Indolmycin treatment ablates apicoplast inheritance and is rescuable by addition of the apicoplast metabolite isopentenyl pyrophosphate (IPP). These data establish that inhibition of an apicoplast housekeeping enzyme leads to loss of the apicoplast and this is sufficient for delayed death. Apicoplast TrpRS is essential for protein translation and is a promising, specific antimalarial target.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Tryptophan-tRNA Ligase/antagonists & inhibitors , Apicoplasts/drug effects , Apicoplasts/enzymology , Computational Biology , Cytosol/metabolism , Evolution, Molecular , Genetic Complementation Test , Green Fluorescent Proteins/metabolism , Indoles/chemistry , Inhibitory Concentration 50 , Phylogeny , Plasmids/metabolism , Plasmodium falciparum/enzymology , Protein Biosynthesis , Tryptophan/chemistry
2.
FEBS J ; 282(19): 3808-23, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26198663

ABSTRACT

The malarial parasite Plasmodium falciparum is exposed to substantial redox challenges during its complex life cycle. In intraerythrocytic parasites, haemoglobin breakdown is a major source of reactive oxygen species. Deficiencies in human glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate pathway (PPP), lead to a disturbed redox equilibrium in infected erythrocytes and partial protection against severe malaria. In P. falciparum, the first two reactions of the PPP are catalysed by the bifunctional enzyme glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho). This enzyme differs structurally from its human counterparts and represents a potential target for drugs. In the present study we used epitope tagging of endogenous PfGluPho to verify that the enzyme localises to the parasite cytosol. Furthermore, attempted double crossover disruption of the PfGluPho gene indicates that the enzyme is essential for the growth of blood stage parasites. As a further step towards targeting PfGluPho pharmacologically, ellagic acid was characterised as a potent PfGluPho inhibitor with an IC50 of 76 nM. Interestingly, pro-oxidative drugs or treatment of the parasites with H2O2 only slightly altered PfGluPho expression or activity under the conditions tested. Furthermore, metabolic profiling suggested that pro-oxidative drugs do not significantly perturb the abundance of PPP intermediates. These data indicate that PfGluPho is essential in asexual parasites, but that the oxidative arm of the PPP is not strongly regulated in response to oxidative challenge.


Subject(s)
Antimalarials/pharmacology , Carboxylic Ester Hydrolases/metabolism , Ellagic Acid/pharmacology , Glucosephosphate Dehydrogenase/metabolism , Multienzyme Complexes/metabolism , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Blood/parasitology , Carboxylic Ester Hydrolases/antagonists & inhibitors , Cytosol/enzymology , Ellagic Acid/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gene Knockout Techniques , Glucose/metabolism , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Humans , Hydrogen Peroxide/pharmacology , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Targeted Therapy , Multienzyme Complexes/antagonists & inhibitors , Oxidative Stress , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics
3.
Int J Parasitol Drugs Drug Resist ; 4(1): 1-13, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24596663

ABSTRACT

Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases.

4.
Mol Microbiol ; 88(5): 891-905, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23614815

ABSTRACT

The reduced genomes of the apicoplast and mitochondrion of the malaria parasite Plasmodium falciparum are actively translated and antibiotic-mediated translation inhibition is detrimental to parasite survival. In order to understand recycling of organellar ribosomes, a critical step in protein translation, we identified ribosome recycling factors (RRF) encoded by the parasite nuclear genome. Targeting of PfRRF1 and PfRRF2 to the apicoplast and mitochondrion respectively was established by localization of leader sequence-GFP fusions. Unlike any RRF characterized thus far, PfRRF2 formed dimers with disulphide interaction(s) and additionally localized in the cytoplasm, thus suggesting adjunct functions for the factor. PfRRF1 carries a large 108-amino-acid insertion in the functionally critical hinge region between the head and tail domains of the protein, yet complemented Escherichia coli RRF in the LJ14frr(ts) mutant and disassembled surrogate E. coli 70S ribosomes in the presence of apicoplast-targeted EF-G. Recombinant PfRRF2 bound E. coli ribosomes and could split monosomes in the presence of the relevant mitochondrial EF-G but failed to complement the LJ14frr(ts) mutant. Although proteins comprising subunits of P. falciparum organellar ribosomes are predicted to differ from bacterial and mitoribosomal counterparts, our results indicate that the essential interactions required for recycling are conserved in parasite organelles.


Subject(s)
Apicoplasts/enzymology , Apicoplasts/genetics , Mitochondria/enzymology , Mitochondria/genetics , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics , Ribosomal Proteins/genetics , Amino Acid Sequence , Molecular Sequence Data , Protein Biosynthesis , Protein Multimerization , Protein Transport , RNA, Messenger/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Sequence Alignment
5.
Int J Parasitol ; 41(3-4): 417-27, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21163263

ABSTRACT

Protein translation in the plastid (apicoplast) of Plasmodium spp. is of immense interest as a target for potential anti-malarial drugs. However, the molecular data on apicoplast translation needed for optimisation and development of novel inhibitors is lacking. We report characterisation of two key translation elongation factors in Plasmodium falciparum, apicoplast-encoded elongation factor PfEF-Tu and nuclear-encoded PfEF-Ts. Recombinant PfEF-Tu hydrolysed GTP and interacted with its presumed nuclear-encoded partner PfEF-Ts. The EF-Tu inhibitor kirromycin affected PfEF-Tu activity in vitro, indicating that apicoplast EF-Tu is indeed the target of this drug. The predicted PfEF-Ts leader sequence targeted GFP to the apicoplast, confirming that PfEF-Ts functions in this organelle. Recombinant PfEF-Ts mediated nucleotide exchange on PfEF-Tu and homology modeling of the PfEF-Tu:PfEF-Ts complex revealed PfEF-Ts-induced structural alterations that would expedite GDP release from PfEF-Tu. Our results establish functional interaction between two apicoplast translation factors encoded by genes residing in different cellular compartments and highlight the significance of their sequence/structural differences from bacterial elongation factors in relation to inhibitor activity. These data provide an experimental system to study the effects of novel inhibitors targeting PfEF-Tu and PfEF-Tu.PfEF-Ts interaction. Our finding that apicoplast EF-Tu possesses chaperone-related disulphide reductase activity also provides a rationale for retention of the tufA gene on the plastid genome.


Subject(s)
Cell Nucleus/metabolism , Peptide Elongation Factor Tu/metabolism , Peptide Elongation Factors/metabolism , Plasmodium falciparum/metabolism , Plastids/metabolism , Protein Biosynthesis , Animals , Anti-Bacterial Agents/pharmacology , Cell Nucleus/genetics , Models, Molecular , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/drug effects , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factors/chemistry , Peptide Elongation Factors/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium falciparum/ultrastructure , Plastids/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Pyridones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...