Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 32(9): 1466-1482, 2023 04 20.
Article in English | MEDLINE | ID: mdl-36519761

ABSTRACT

Abnormal lipid homeostasis has been observed in the brain of Parkinson's disease (PD) patients and experimental models, although the mechanism underlying this phenomenon is unclear. Notably, previous studies have reported that the PD-linked protein Parkin functionally interacts with important lipid regulators, including Sterol Regulatory Element-Binding Proteins (SREBPs) and cluster of differentiation 36 (CD36). Here, we demonstrate a functional relationship between Parkin and lipoprotein lipase (LPL), a triglyceride lipase that is widely expressed in the brain. Using a human neuroblastoma cell line and a Parkin knockout mouse model, we demonstrate that Parkin expression level positively correlates with neuronal LPL protein level and activity. Importantly, our study identified SREBP2, a major regulator of sterol and fatty acid synthesis, as a potential mediator between Parkin and LPL. Supporting this, SREBP2 genetic ablation abolished Parkin effect on LPL expression. We further demonstrate that Parkin-LPL pathway regulates the formation of intracellular lipid droplets, and that this pathway is upregulated upon exposure to PD-linked oxidative stress induced by rotenone. Finally, we show that inhibition of either LPL or SREBP2 exacerbates rotenone-induced cell death. Taken together, our findings reveal a novel pathway linking Parkin, SREBP2 and LPL in neuronal lipid homeostasis that may be relevant to the pathogenesis of PD.


Subject(s)
Lipoprotein Lipase , Parkinson Disease , Sterol Regulatory Element Binding Protein 2 , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Homeostasis , Lipid Metabolism/genetics , Lipid Metabolism/physiology , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Mice, Knockout , Neurons/metabolism , Parkinson Disease/genetics , Parkinson Disease/metabolism , Rotenone/adverse effects , Signal Transduction , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
Ann Neurol ; 90(3): 490-505, 2021 09.
Article in English | MEDLINE | ID: mdl-34288055

ABSTRACT

OBJECTIVE: We utilized human midbrain-like organoids (hMLOs) generated from human pluripotent stem cells carrying glucocerebrosidase gene (GBA1) and α-synuclein (α-syn; SNCA) perturbations to investigate genotype-to-phenotype relationships in Parkinson disease, with the particular aim of recapitulating α-syn- and Lewy body-related pathologies and the process of neurodegeneration in the hMLO model. METHODS: We generated and characterized hMLOs from GBA1-/- and SNCA overexpressing isogenic embryonic stem cells and also generated Lewy body-like inclusions in GBA1/SNCA dual perturbation hMLOs and conduritol-b-epoxide-treated SNCA triplication hMLOs. RESULTS: We identified for the first time that the loss of glucocerebrosidase, coupled with wild-type α-syn overexpression, results in a substantial accumulation of detergent-resistant, ß-sheet-rich α-syn aggregates and Lewy body-like inclusions in hMLOs. These Lewy body-like inclusions exhibit a spherically symmetric morphology with an eosinophilic core, containing α-syn with ubiquitin, and can also be formed in Parkinson disease patient-derived hMLOs. We also demonstrate that impaired glucocerebrosidase function promotes the formation of Lewy body-like inclusions in hMLOs derived from patients carrying the SNCA triplication. INTERPRETATION: Taken together, the data indicate that our hMLOs harboring 2 major risk factors (glucocerebrosidase deficiency and wild-type α-syn overproduction) of Parkinson disease provide a tractable model to further elucidate the underlying mechanisms for progressive Lewy body formation. ANN NEUROL 2021;90:490-505.


Subject(s)
Glucosylceramidase/deficiency , Lewy Bodies/metabolism , Mesencephalon/metabolism , Mutation/physiology , Organoids/metabolism , alpha-Synuclein/biosynthesis , Embryonic Stem Cells/metabolism , Glucosylceramidase/genetics , Humans , Lewy Bodies/genetics , Lewy Bodies/pathology , Mesencephalon/pathology , Organoids/pathology , alpha-Synuclein/genetics
3.
Science ; 366(6472): 1486-1492, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31857479

ABSTRACT

Disruptions in the ubiquitin protein ligase E3A (UBE3A) gene cause Angelman syndrome (AS). Whereas AS model mice have associated synaptic dysfunction and altered plasticity with abnormal behavior, whether similar or other mechanisms contribute to network hyperactivity and epilepsy susceptibility in AS patients remains unclear. Using human neurons and brain organoids, we demonstrate that UBE3A suppresses neuronal hyperexcitability via ubiquitin-mediated degradation of calcium- and voltage-dependent big potassium (BK) channels. We provide evidence that augmented BK channel activity manifests as increased intrinsic excitability in individual neurons and subsequent network synchronization. BK antagonists normalized neuronal excitability in both human and mouse neurons and ameliorated seizure susceptibility in an AS mouse model. Our findings suggest that BK channelopathy underlies epilepsy in AS and support the use of human cells to model human developmental diseases.


Subject(s)
Angelman Syndrome/metabolism , Calcium Channels, N-Type/metabolism , Ubiquitin-Protein Ligases/metabolism , Angelman Syndrome/physiopathology , Animals , Epilepsy/metabolism , Humans , Mice , Models, Neurological , Neurons/drug effects , Neurons/metabolism , Organoids , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/therapeutic use , Seizures/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
4.
Arterioscler Thromb Vasc Biol ; 38(10): 2396-2409, 2018 10.
Article in English | MEDLINE | ID: mdl-30354219

ABSTRACT

Objective- Vascular endothelial dysfunction is a key component of several major human diseases, but the molecular basis of this complex disorder has been difficult to determine in vivo. Previous attempts to identify key mediators of vascular endothelial dysfunction in experimental models have been limited by the lack of suitable methods for system-wide analyses of vascular bed biology. Here, we aimed to develop a novel method for investigating vascular endothelial dysfunction pathogenesis that enables system-wide analyses of molecular interactions between endothelial glycocalyx, endothelial cells, and smooth muscle cells in murine. Approach and Results- We developed a new technique using whole-body differential perfusion with increasing concentrations of detergent buffer to selectively solubilize distinct layers of vascular bed tissue in rodents. When combined with proteomics techniques, our novel approach of differential systemic decellularization in vivo enabled quantitative profiling of vascular beds throughout the body. Initial perfusion with phosphate buffer was used to obtain the endothelial glycocalyx, followed by subsequent extraction of endothelial cell components, and finally by smooth muscle cell constituents with increasing concentrations of detergent. Differential systemic decellularization in vivo has also been successfully applied to characterize molecular events in the vascular bed pathology of lipopolysaccharide-challenged mice. Conclusions- Together, these data indicate that differential systemic decellularization in vivo permits system-wide molecular characterization of vascular bed proteomes in rodent models and can be used to advance our current understanding of vascular endothelial dysfunction pathogenesis and progression in a wide range of disease settings.


Subject(s)
Aorta, Thoracic/drug effects , Deoxycholic Acid/pharmacology , Detergents/pharmacology , Endotoxemia/metabolism , Perfusion/methods , Proteome , Proteomics/methods , Animals , Aorta, Thoracic/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Biomarkers/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endotoxemia/chemically induced , Endotoxemia/pathology , Endotoxemia/physiopathology , Glycocalyx/drug effects , Glycocalyx/metabolism , Glycocalyx/pathology , Lipopolysaccharides , Male , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Reproducibility of Results
6.
Cell Res ; 28(8): 787-802, 2018 08.
Article in English | MEDLINE | ID: mdl-29934616

ABSTRACT

Mitophagy is an important type of selective autophagy for specific elimination of damaged mitochondria. PTEN-induced putative kinase protein 1 (PINK1)-catalyzed phosphorylation of ubiquitin (Ub) plays a critical role in the onset of PINK1-Parkin-mediated mitophagy. Phosphatase and tensin homolog (PTEN)-long (PTEN-L) is a newly identified isoform of PTEN, with addition of 173 amino acids to its N-terminus. Here we report that PTEN-L is a novel negative regulator of mitophagy via its protein phosphatase activity against phosphorylated ubiquitin. We found that PTEN-L localizes at the outer mitochondrial membrane (OMM) and overexpression of PTEN-L inhibits, whereas deletion of PTEN-L promotes, mitophagy induced by various mitochondria-damaging agents. Mechanistically, PTEN-L is capable of effectively preventing Parkin mitochondrial translocation, reducing Parkin phosphorylation, maintaining its closed inactive conformation, and inhibiting its E3 ligase activity. More importantly, PTEN-L reduces the level of phosphorylated ubiquitin (pSer65-Ub) in vivo, and in vitro phosphatase assay confirms that PTEN-L dephosphorylates pSer65-Ub via its protein phosphatase activity, independently of its lipid phosphatase function. Taken together, our findings demonstrate a novel function of PTEN-L as a protein phosphatase for ubiquitin, which counteracts PINK1-mediated ubiquitin phosphorylation leading to blockage of the feedforward mechanisms in mitophagy induction and eventual suppression of mitophagy. Thus, understanding this novel function of PTEN-L provides a key missing piece in the molecular puzzle controlling mitophagy, a critical process in many important human diseases including neurodegenerative disorders such as Parkinson's disease.


Subject(s)
Mitochondria/physiology , Mitochondrial Proteins/metabolism , Mitophagy , PTEN Phosphohydrolase/physiology , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Animals , Gene Knockout Techniques , HEK293 Cells , HeLa Cells , Humans , Isoenzymes , Mice , Mitochondria/enzymology , Mitochondrial Membranes/enzymology , PTEN Phosphohydrolase/genetics , Parkinson Disease/metabolism , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...