Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 12(11)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36354448

ABSTRACT

More than half of all pleural effusions are due to malignancy of which lung cancer is the main cause. Pleural effusions can complicate the course of pneumonia, pulmonary tuberculosis, or underlying systemic disease. We explore the application of label-free surface-enhanced Raman spectroscopy (SERS) as a point of care (POC) diagnostic tool to identify if pleural effusions are due to lung cancer or to other causes (controls). Lung cancer samples showed specific SERS spectral signatures such as the position and intensity of the Raman band in different wave number region using a novel silver coated silicon nanopillar (SCSNP) as a SERS substrate. We report a classification accuracy of 85% along with a sensitivity and specificity of 87% and 83%, respectively, for the detection of lung cancer over control pleural fluid samples with a receiver operating characteristics (ROC) area under curve value of 0.93 using a PLS-DA binary classifier to distinguish between lung cancer over control subjects. We have also evaluated discriminative wavenumber bands responsible for the distinction between the two classes with the help of a variable importance in projection (VIP) score. We found that our label-free SERS platform was able to distinguish lung cancer from pleural effusions due to other causes (controls) with higher diagnostic accuracy.


Subject(s)
Lung Neoplasms , Pleural Effusion, Malignant , Pleural Effusion , Humans , Pleural Effusion, Malignant/diagnosis , Pleural Effusion, Malignant/etiology , Pleural Effusion, Malignant/pathology , Lung Neoplasms/complications , Lung Neoplasms/diagnosis , Pleural Effusion/complications , Pleural Effusion/diagnosis , ROC Curve , Machine Learning
2.
Int J Nanomedicine ; 16: 5869-5878, 2021.
Article in English | MEDLINE | ID: mdl-34483659

ABSTRACT

BACKGROUND: Wound management is stretching the limits of health systems globally, challenging clinicians to evaluate the effectiveness of their treatments and deliver appropriate care to their patients. Visual inspection and manual measurement of wound size are subjective, often inaccurate and inconsistent. Growth factors, such as pro-inflammatory cytokines and proteases, play important roles in cutaneous wound healing. However, little is known about the point-of-care monitoring of the changes in such markers during the healing process. Here, we explore the capability of surface-enhanced Raman spectroscopy (SERS) as a viable point-of-care platform to monitor the changes of these surrogate indicators of healing status in chronic wounds. METHODS: We developed a biofunctionalized flexible, cost-effective, scalable and easy-to-fabricate plasmonic SERS substrate using cellulose fibre (CF), which is used for sensing of wound markers based on a modified immunoassay method. RESULTS: We evaluated and selected the reliable silver nano-island thickness that will be sputtered onto the CF-based substrate for the highest SERS enhancement. Using this biofunctionalized SERS substrate, we detected varying concentrations of MMP-9 (10-5000 ng/mL) and TNF-α (5-100 ng/mL) proteins to model the wound exudates. This SERS detection method demonstrates a linear response within biologically relevant concentrations, ranging from 10 to 500 ng/mL for MMP-9 and 5 to 25 ng/mL for TNF-α for these surrogate indicators. CONCLUSION: Our SERS sensing platform achieved detection limits in the µM to sub-nM range and displayed high sensitivity and selectivity. This could result in a cheap, point-of-care device that provides a non-invasive measure of cutaneous wound healing in real time. We envision that these flexible substrates after activation may be incorporated into wound dressings in future for routine monitoring of wound healing status.


Subject(s)
Cellulose , Metal Nanoparticles , Biomarkers , Humans , Point-of-Care Systems , Spectrum Analysis, Raman , Wound Healing
3.
J Biophotonics ; 14(11): e202100153, 2021 11.
Article in English | MEDLINE | ID: mdl-34369655

ABSTRACT

In this article, we report for the first time, the detection of circulating miRNA as a breast cancer biomarker in patient sera using surface plasmon resonance imaging biosensor. The advantage of this approach lies in the rapid, label-free and sensitive detection. The sensor excites plasmonic resonance on the gold sensor surface and specific DNA-miRNA molecular bindings elucidate responses in the plasmonic resonance image. Experiments of detecting synthetic miRNA molecules (miR-1249) were performed and the sensor resolution was found to be 63.5 nM. The sensor was further applied to screen 17 patient serum samples from National Cancer Centre Singapore and Tan Tock Seng Hospital. Sensor intensity response was found to differ by 20% between malignant and benign cases and thus forms, a potential and an important metric in distinguishing benignity and malignancy.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Circulating MicroRNA , Biomarkers, Tumor/genetics , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/genetics , Female , Gold , Humans , Surface Plasmon Resonance
4.
Photoacoustics ; 19: 100164, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32420026

ABSTRACT

In this pilot study, we tested an ultrasound-guided optoacoustic tomography (US-OT) two-dimensional (2D) array scanner to understand the optoacoustic patterns of excised breastconserving surgery (BCS) specimens. We imaged 14 BCS specimens containing malignant tumors at eight wavelengths spanning 700-1100 nm. Spectral unmixing across multiple wavelengths allowed for visualizing major intrinsic chromophores in the breast tissue including hemoglobin and lipid up to a depth of 7 mm. We identified less/no lipid signals within the tumor and intense deoxy-hemoglobin (Hb) signals on the rim of the tumor as unique characteristics of malignant tumors in comparison to no tumor region. We also observed continuous broad lipid signals as features of negative margins and compromised lipid signals interrupted by vasculature as features of positive margins. These differentiating patterns can form the basis of US-OT to be explored as an alternate, fast and efficient intraoperative method for evaluation of tumor resection margins.

5.
Transl Oncol ; 13(2): 254-261, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31869750

ABSTRACT

PURPOSE: To determine the accuracy of a handheld ultrasound-guided optoacoustic tomography (US-OT) probe developed for human deep-tissue imaging in ex vivo assessment of tumor margins postlumpectomy. METHODS: A custom-built two-dimensional (2D) US-OT-handheld probe was used to scan 15 lumpectomy breast specimens. Optoacoustic signals acquired at multiple wavelengths between 700 and 1100 nm were reconstructed using model linear algorithm, followed by spectral unmixing for lipid and deoxyhemoglobin (Hb). Distribution maps of lipid and Hb on the anterior, posterior, superior, inferior, medial, and lateral margins of the specimens were inspected for margin involvement, and results were correlated with histopathologic findings. The agreement in tumor margin assessment between US-OT and histopathology was determined using the Bland-Altman plot. Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of margin assessment using US-OT were calculated. RESULTS: Ninety margins (6 × 15 specimens) were assessed. The US-OT probe resolved blood vessels and lipid up to a depth of 6 mm. Negative and positive margins were discriminated by marked differences in the distribution patterns of lipid and Hb. US-OT assessments were concordant with histopathologic findings in 87 of 89 margins assessed (one margin was uninterpretable and excluded), with diagnostic accuracy of 97.9% (kappa = 0.79). The sensitivity, specificity, PPV, and NPV were 100% (4/4), 97.6% (83/85), 66.7% (4/6), and 100% (83/83), respectively. CONCLUSION: US-OT was capable of providing distribution maps of lipid and Hb in lumpectomy specimens that predicted tumor margins with high sensitivity and specificity, making it a potential tool for intraoperative tumor margin assessment.

7.
Transl Oncol ; 11(5): 1251-1258, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30103155

ABSTRACT

PURPOSE: Here we demonstrate the potential of multispectral optoacoustic tomography (MSOT), a new non-invasive structural and functional imaging modality, to track the growth and changes in blood oxygen saturation (sO2) in orthotopic glioblastoma (GBMs) and the surrounding brain tissues upon administration of a vascular disruptive agent (VDA). METHODS: Nude mice injected with U87MG tumor cells were longitudinally monitored for the development of orthotopic GBMs up to 15 days and observed for changes in sO2 upon administration of combretastatin A4 phosphate (CA4P, 30 mg/kg), an FDA approved VDA for treating solid tumors. We employed a newly-developed non-negative constrained approach for combined MSOT image reconstruction and unmixing in order to quantitatively map sO2 in whole mouse brains. RESULTS: Upon longitudinal monitoring, tumors could be detected in mouse brains using single-wavelength data as early as 6 days post tumor cell inoculation. Fifteen days post-inoculation, tumors had higher sO2 of 63 ± 11% (n = 5, P < .05) against 48 ± 7% in the corresponding contralateral brain, indicating their hyperoxic status. In a different set of animals, 42 days post-inoculation, tumors had lower sO2 of 42 ± 5% against 49 ± 4% (n = 3, P < .05) in the contralateral side, indicating their hypoxic status. Upon CA4P administration, sO2 in 15 days post-inoculation tumors dropped from 61 ± 9% to 36 ± 1% (n = 4, P < .01) within one hour, then reverted to pre CA4P treatment values (63 ± 6%) and remained constant until the last observation time point of 6 hours. CONCLUSION: With the help of advanced post processing algorithms, MSOT was capable of monitoring the tumor growth and assessing hemodynamic changes upon administration of VDAs in orthotopic GBMs.

8.
Sensors (Basel) ; 17(10)2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29035344

ABSTRACT

In this paper, we present a phase-intensity surface plasmon resonance (SPR) biosensor and demonstrate its use for avian influenza A (H5N1) antibody biomarker detection. The sensor probes the intensity variation produced by the steep phase response at surface plasmon excitation. The prism sensor head is fixed between a pair of polarizers with a perpendicular orientation angle and a forbidden transmission path. At SPR, a steep phase change is introduced between the p- and s-polarized light, and this rotates the polarization ellipse of the transmission beam. This allows the light at resonance to be transmitted and a corresponding intensity change to be detected. Neither time-consuming interference fringe analysis nor a phase extraction process is required. In refractive index sensing experiments, the sensor resolution was determined to be 6.3 × 10-6 refractive index values (RIU). The sensor has been further applied for H5N1 antibody biomarker detection, and the sensor resolution was determined to be 193.3 ng mL-1, compared to 1 µg mL-1 and 0.5 µg mL-1, as reported in literature for influenza antibody detection using commercial Biacore systems. It represents a 517.3% and 258.7% improvement in detection limit, respectively. With the unique features of label-free, real-time, and sensitive detection, the phase-intensity SPR biosensor has promising potential applications in influenza detection.


Subject(s)
Biosensing Techniques/instrumentation , Influenza A Virus, H5N1 Subtype , Influenza in Birds/diagnosis , Surface Plasmon Resonance , Animals , Antibodies, Viral/analysis , Birds , Limit of Detection
9.
Adipocyte ; 5(4): 378-383, 2016.
Article in English | MEDLINE | ID: mdl-27994952

ABSTRACT

Retinoic acid (RA) is essential for early developmental processes and stem cell differentiation, but less is known about its contributions to adult tissues and stem cells including adipose tissue. We previously demonstrated that many genes involved in RA synthesis and downstream pathway are differentially expressed in adipose-derived stem cells (ASCs) from visceral fat compared to those from subcutaneous fat, leading to changes in their early adipogenic functions. In order to study potential contributions of RA in adipose tissue, we measured tissue RA levels using a technique based on surface-enhanced Raman spectroscopy (SERS). The data indicate heretofore underappreciated abundance of endogenous RA in mouse adipose tissue compared to other tissues and dynamic changes of RA concentrations after high fat diet feeding. Our results lay the foundation for further investigation on the functional role of RA in adipose tissue development and metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...