Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 266, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212341

ABSTRACT

Distributed quantum metrology has drawn intense interest as it outperforms the optimal classical counterparts in estimating multiple distributed parameters. However, most schemes so far have required entangled resources consisting of photon numbers equal to or more than the parameter numbers, which is a fairly demanding requirement as the number of nodes increases. Here, we present a distributed quantum sensing scenario in which quantum-enhanced sensitivity can be achieved with fewer photons than the number of parameters. As an experimental demonstration, using a two-photon entangled state, we estimate four phases distributed 3 km away from the central node, resulting in a 2.2 dB sensitivity enhancement from the standard quantum limit. Our results show that the Heisenberg scaling can be achieved even when using fewer photons than the number of parameters. We believe our scheme will open a pathway to perform large-scale distributed quantum sensing with currently available entangled sources.

2.
Opt Express ; 30(17): 30525-30535, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242154

ABSTRACT

Quantum correlations between identical particles are at the heart of quantum technologies. Several studies with two identical particles have shown that the spatial overlap and indistinguishability between the particles are necessary for generating bipartite entanglement. On the other hand, researches on the extension to more than two-particle systems are limited by the practical difficulty to control multiple identical particles in laboratories. In this work, we propose schemes to generate two fundamental classes of genuine tripartite entanglement, i.e., GHZ and W classes, which are experimentally demonstrated using linear optics with three identical photons. We also show that the tripartite entanglement class decays from the genuine entanglement to the full separability as the particles become more distinguishable from each other. Our results support the prediction that particle indistinguishability is a fundamental element for entangling identical particles.

3.
Nano Lett ; 22(4): 1672-1679, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35133163

ABSTRACT

Engineering a strongly interacting uniform qubit cluster would be a major step toward realizing a scalable quantum system for quantum sensing and a node-based qubit register. For a solid-state system that uses a defect as a qubit, various methods to precisely position defects have been developed, yet the large-scale fabrication of qubits within the strong coupling regime at room temperature continues to be a challenge. In this work, we generate nitrogen vacancy (NV) color centers in diamond with sub-10 nm scale precision using a combination of nanoscale aperture arrays (NAAs) with a high aspect ratio of 10 and a secondary E-beam hole pattern used as an ion-blocking mask. We perform optical and spin measurements on a cluster of NV spins and statistically investigate the effect of the NAAs during an ion-implantation process. We discuss how this technique is effective for constructing a scalable system.

4.
Phys Rev Lett ; 128(5): 050401, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35179912

ABSTRACT

While an information-disturbance trade-off in quantum measurement has been at the core of foundational quantum physics and constitutes a basis of secure quantum information processing, recently verified reversibility of a quantum measurement requires to refine it toward a complete version of information trade-off in quantum measurement. Here we experimentally demonstrate a trade-off relation among all information contents, i.e., information gain, disturbance, and reversibility in quantum measurement. By exploring quantum measurements applied on a photonic qutrit, we observe that the information of a quantum state is split into three distinct parts accounting for the extracted, disturbed, and reversible information. We verify that such different parts of information are in trade-off relations not only pairwise but also triplewise all at once, and find that the triplewise relation is tighter than any of the pairwise relations. Finally, we realize optimal quantum measurements that inherently preserve quantum information without loss of information, which offer wider applications in measurement-based quantum information processing.

6.
Opt Express ; 29(18): 29527-29540, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615061

ABSTRACT

Linear optical multiports are widely used in photonic quantum information processing. Naturally, these devices are directionally-biased since photons always propagate from the input ports toward the output ports. Recently, the concept of directionally-unbiased linear optical multiports was proposed. These directionally-unbiased multiports allow photons to propagate along a reverse direction, which can greatly reduce the number of required linear optical elements for complicated linear optical quantum networks. Here, we report an experimental demonstration of a 3 × 3 directionally-unbiased linear optical fiber multiport using an optical tritter and mirrors. Compared to the previous demonstration using bulk optical elements which works only with light sources with a long coherence length, our experimental directionally-unbiased 3 × 3 optical multiport does not require a long coherence length since it provides negligible optical path length differences among all possible optical trajectories. It can be a useful building block for implementing large-scale quantum walks on complex graph networks.

7.
Nat Commun ; 12(1): 5211, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34471118

ABSTRACT

Quantum metrology can achieve enhanced sensitivity for estimating unknown parameters beyond the standard quantum limit. Recently, multiple-phase estimation exploiting quantum resources has attracted intensive interest for its applications in quantum imaging and sensor networks. For multiple-phase estimation, the amount of enhanced sensitivity is dependent on quantum probe states, and multi-mode N00N states are known to be a key resource for this. However, its experimental demonstration has been missing so far since generating such states is highly challenging. Here, we report generation of multi-mode N00N states and experimental demonstration of quantum enhanced multiple-phase estimation using the multi-mode N00N states. In particular, we show that the quantum Cramer-Rao bound can be saturated using our two-photon four-mode N00N state and measurement scheme using a 4 × 4 multi-mode beam splitter. Our multiple-phase estimation strategy provides a faithful platform to investigate multiple parameter estimation scenarios.

8.
Opt Express ; 28(26): 39048-39057, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33379462

ABSTRACT

In this study, photonic crystals with a partial bandgap are demonstrated in the visible region using single-crystal diamonds. Quasi-three-dimensional photonic crystal structures are fabricated in the surface of the single-crystal diamonds using a tetrahedron Faraday cage that enables angled dry etching in three directions simultaneously. The reflection spectra can be controlled by varying the lattice constant of the photonic crystals. In addition, nitrogen-vacancy center single-photon sources are implanted on top of the diamond photonic crystals, and doubled collection efficiency from the light sources is achieved.

9.
Opt Express ; 28(25): 38083-38092, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379628

ABSTRACT

Particle identity and entanglement are two fundamental quantum properties that work as major resources for various quantum information tasks. However, it is still a challenging problem to understand the correlation of the two properties in the same system. While recent theoretical studies have shown that the spatial overlap between identical particles is necessary for nontrivial entanglement, the exact role of particle indistinguishability in the entanglement of identical particles has never been analyzed quantitatively before. Here, we theoretically and experimentally investigate the behavior of entanglement between two bosons as spatial overlap and indistinguishability simultaneously vary. The theoretical computation of entanglement for generic two bosons with pseudospins is verified experimentally in a photonic system. Our results show that the amount of entanglement is a monotonically increasing function of both quantities. We expect that our work provides an insight into deciphering the role of the entanglement in quantum networks that consist of identical particles.

10.
Opt Lett ; 45(9): 2624-2627, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32356832

ABSTRACT

Reference-frame-independent quantum key distribution (RFI-QKD) provides a practical way to generate secret keys between two remote parties without sharing common reference frames. On the other hand, measurement-device-independent QKD (MDI-QKD) offers a high level of security, as it is immune to all quantum hacking attempts to measurement devices. The combination of these two QKD protocols, i.e., RFI-MDI-QKD, is one of the most fascinating QKD protocols, since it holds advantages of both practicality and security. For further practicality of RFI-MDI-QKD, it is beneficial to reduce the implementation complexity. Here, we show that RFI-MDI-QKD can be implemented using fewer quantum states than those of its original proposal. We find that, in principle, the number of quantum states for one of the parties can be reduced from six to three without compromising security. Compared to conventional RFI-MDI-QKD where both parties transmit six quantum states, it significantly simplifies the implementation of the QKD protocol. We also verify the feasibility of the scheme with a proof-of-principle experiment.

11.
Phys Rev Lett ; 121(22): 227402, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30547610

ABSTRACT

Nonperturbative coupling between cavity photons and excitons leads to the formation of hybrid light-matter excitations, termed polaritons. In structures where photon absorption leads to the creation of excitons with aligned permanent dipoles, the elementary excitations, termed dipolar polaritons, are expected to exhibit enhanced interactions. Here, we report a substantial increase in interaction strength between dipolar polaritons as the size of the dipole is increased by tuning the applied gate voltage. To this end, we use coupled quantum well structures embedded inside a microcavity where coherent electron tunneling between the wells creates the excitonic dipole. Modifications of the interaction strength are characterized by measuring the changes in the reflected light intensity when polaritons are driven with a resonant laser. The factor of 6.5 increase in the interaction-strength-to-linewidth ratio that we obtain indicates that dipolar polaritons could constitute an important step towards a demonstration of the polariton blockade effect, and thereby to form the building blocks of many-body states of light.

12.
Nat Commun ; 8: 14540, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28230047

ABSTRACT

Neutral particles subject to artificial gauge potentials can behave as charged particles in magnetic fields. This fascinating premise has led to demonstrations of one-way waveguides, topologically protected edge states and Landau levels for photons. In ultracold neutral atoms, effective gauge fields have allowed the emulation of matter under strong magnetic fields leading to realization of Harper-Hofstadter and Haldane models. Here we show that application of perpendicular electric and magnetic fields effects a tunable artificial gauge potential for two-dimensional microcavity exciton polaritons. For verification, we perform interferometric measurements of the associated phase accumulated during coherent polariton transport. Since the gauge potential originates from the magnetoelectric Stark effect, it can be realized for photons strongly coupled to excitations in any polarizable medium. Together with strong polariton-polariton interactions and engineered polariton lattices, artificial gauge fields could play a key role in investigation of non-equilibrium dynamics of strongly correlated photons.

13.
Opt Express ; 25(3): 2540-2551, 2017 Feb 06.
Article in English | MEDLINE | ID: mdl-29519098

ABSTRACT

We report an investigation on quantum discord in classical second-order interference. In particular, we theoretically show that a bipartite state with D = 0.311 of discord can be generated via classical second-order interference. We also experimentally verify the theory by obtaining D = 0.197 ± 0.060 of non-zero discord state. Together with the fact that the nonclassicalities originated from physical constraints and information theoretic perspectives are not equivalent, this result provides an insight to understand the nature of quantum discord.

14.
Sci Rep ; 6: 25846, 2016 05 13.
Article in English | MEDLINE | ID: mdl-27174100

ABSTRACT

An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.

15.
Opt Express ; 23(24): 30807-14, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26698713

ABSTRACT

Entangled photons, an essential resource in quantum technology, are mostly generated in spontaneous processes, making it impossible to know if the quantum state is available for use; giving only a posteriori knowledge of the quantum state via destructive photon detection processes. There are schemes for heralding the generation of entangled photons but the heralding schemes developed to date only inform the generation of a predetermined quantum state with no capability of state control. Here, we report the phase and (probability-) amplitude controlled heralding, i.e., complete quantum state heralding, of multiphoton entangled states or N00N states. Since the phase and amplitude controls are inseparably integrated into the heralding mechanism, our scheme enables generation of N00N states with arbitrary phases and amplitudes. Such a flexible heralding scheme is expected to play important roles in various photonic quantum information applications.

16.
Sci Rep ; 5: 15384, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26487083

ABSTRACT

Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

17.
Opt Express ; 23(20): 26012-22, 2015 Oct 05.
Article in English | MEDLINE | ID: mdl-26480116

ABSTRACT

Entanglement is known to be an essential resource for many quantum information processes. However, it is now known that some quantum features may be acheived with quantum discord, a generalized measure of quantum correlation. In this paper, we study how quantum discord, or more specifically, the measures of entropic discord and geometric discord are affected by the influence of amplitude damping decoherence. We also show that a protocol deploying weak measurement and quantum measurement reversal can effectively protect quantum discord from amplitude damping decoherence, enabling to distribute quantum correlation between two remote parties in a noisy environment.

18.
Opt Express ; 22(16): 19055-68, 2014 Aug 11.
Article in English | MEDLINE | ID: mdl-25320992

ABSTRACT

When two entangled qubits, each owned by Alice and Bob, undergo separate decoherence, the amount of entanglement is reduced, and often, weak decoherence causes complete loss of entanglement, known as entanglement sudden death. Here we show that it is possible to apply quantum measurement reversal on a single-qubit to avoid entanglement sudden death, rather than on both qubits. Our scheme has important applications in quantum information processing protocols based on distributed or stored entangled qubits as they are subject to decoherence.

19.
Phys Rev Lett ; 113(2): 020504, 2014 Jul 11.
Article in English | MEDLINE | ID: mdl-25062154

ABSTRACT

Quantum measurement unavoidably disturbs the state of a quantum system if any information about the system is extracted. Recently, the concept of reversing quantum measurement has been introduced and has attracted much attention. Numerous efforts have thus been devoted to understanding the fundamental relation of the amount of information obtained by measurement to either state disturbance or reversibility. Here, we experimentally prove the trade-off relations in quantum measurement with respect to both state disturbance and reversibility. By demonstrating the quantitative bound of the trade-off relations, we realize an optimal measurement for estimating quantum systems with minimum disturbance and maximum reversibility. Our results offer fundamental insights on quantum measurement and practical guidelines for implementing various quantum information protocols.

20.
Nat Commun ; 5: 4522, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25072967

ABSTRACT

Wheeler's delayed-choice experiment illustrates vividly that the observer plays a central role in quantum physics by demonstrating that complementarity or wave-particle duality can be enforced even after the photon has already entered the interferometer. The delayed-choice quantum eraser experiment further demonstrates that complementarity can be enforced even after detection of a quantum system, elucidating the foundational nature of complementarity in quantum physics. However, the applicability of the delayed-choice method for practical quantum information protocols continues to be an open question. Here, we introduce and experimentally demonstrate the delayed-choice decoherence suppression protocol, in which the decision to suppress decoherence on an entangled two-qubit state is delayed until after the decoherence and even after the detection of a qubit. Our result suggests a new way to tackle Markovian decoherence in a delayed manner, applicable for practical entanglement distribution over a dissipative channel.

SELECTION OF CITATIONS
SEARCH DETAIL
...