Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 772: 145386, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33770858

ABSTRACT

Soil organic matter (SOM) is related to vegetation, soil bacteria, and soil properties; however, not many studies link all these parameters simultaneously, particularly in tundra ecosystems vulnerable to climate change. Our aim was to describe the relationships between vegetation, bacteria, soil properties, and SOM composition in moist acidic tundra by integrating physical, chemical, and molecular methods. A total of 70 soil samples were collected at two different depths from 36 spots systematically arranged over an area of about 300 m × 50 m. Pyrolysis-gas chromatography/mass spectrometry and pyrosequencing of the 16S rRNA gene were used to identify the molecular compositions of the SOM and bacterial community, respectively. Vegetation and soil physicochemical properties were also measured. The sampling sites were grouped into three, based on their SOM compositions: Sphagnum moss-derived SOM, lipid-rich materials, and aromatic-rich materials. Our results show that SOM composition is spatially structured and linked to microtopography; however, the vegetation, soil properties, and bacterial community composition did not show overall spatial structuring. Simultaneously, soil properties and bacterial community composition were the main factors explaining SOM compositional variation, while vegetation had a residual effect. Verrucomicrobia and Acidobacteria were related to polysaccharides, and Chloroflexi was linked to aromatic compounds. These relationships were consistent across different hierarchical levels. Our results suggest that SOM composition at a local scale is closely linked with soil factors and the bacterial community. Comprehensive observation of ecosystem components is recommended to understand the in-situ function of bacteria and the fate of SOM in the moist acidic tundra.


Subject(s)
Ecosystem , Soil , Alaska , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Tundra
2.
J Contam Hydrol ; 223: 103475, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31029465

ABSTRACT

Selection of proper surfactants is critical for applying surfactant-enhanced remediation (SER) to sites contaminated with nonaqueous phase liquids (NAPLs). Here, ethoxylated nonionic surfactants (Tween 20, Tween 40, Tween 80, and Triton X-100) were evaluated for their applicability to remedy chlorinated organic phases, chloroform (CF), trichloroethylene (TCE), and tetrachloroethylene (PCE), on the basis of solubilization capacity, partitioning behavior, and macroemulsion formation. The most hydrophilic CF was not relevant for SER applications since excessive surfactant partitioning into CF rendered only few of them available for its solubilization. In contrast, the more hydrophobic TCE and PCE, having moderate surfactant partitioning, were effectively solubilized. Among Tween surfactants, a more hydrophobic surfactant showed a larger solubilization potential for both chloroethylenes, but it suffered from a greater partitioning loss. Depending on the type and extent of NAPL contaminations, thus, a prior consideration should be given to either solubilization capacity or partitioning loss when selecting the optimal Tween surfactant. Compared to Tween surfactants, the more hydrophobic Triton X-100 showed greater partitioning losses into all three NAPLs. Of particular, its partitioning into CF and TCE was nearly complete, making impractical its application to the remediation of both organic liquids. The formation of macroemulsions, characterized by a high turbidity, may significantly deteriorate SER applicability by producing undesirable flows in aquifers. Their formation became more problematic with the increasing surfactant hydrophilicity and the increasing NAPL hydrophobicity. When these combinations are applied, it is critical to keep such surfactant concentrations as to exploit the solubilization potential but not to cause the macroemulsion formation.


Subject(s)
Tetrachloroethylene , Trichloroethylene , Hydrophobic and Hydrophilic Interactions , Solubility , Surface-Active Agents
3.
Environ Sci Technol ; 50(23): 12621-12629, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27797533

ABSTRACT

Soil is an important environmental reservoir of antibiotic resistance genes (ARGs), which are increasingly recognized as environmental contaminants. Methods to assess the risks associated with the acquisition or transfer of resistance mechanisms are still underdeveloped. Quantification of background levels of antibiotic resistance genes and what alters those is a first step in understanding our environmental resistome. Toward this goal, 62 samples were collected over 3 years from soils near the 30-year old Gondwana Research Station and for 4 years before and during development of the new Jang Bogo Research Station, both at Terra Nova Bay in Antarctica. These sites reflect limited and more extensive human impact, respectively. A qPCR array with 384 primer sets targeting antibiotic resistance genes and mobile genetic elements (MGEs) was used to detect and quantify these genes. A total of 73 ARGs and MGEs encompassing eight major antibiotic resistance gene categories were detected, but most at very low levels. Antarctic soil appeared to be a common reservoir for seven ARGs since they were present in most samples (42%-88%). If the seven widespread genes were removed, there was a correlation between the relative abundance of MGEs and ARGs, more typical of contaminated sites. There was a relationship between ARG content and distance from both research stations, with a significant effect at the Jang Bogo Station especially when excluding the seven widespread genes; however, the relative abundance of ARGs did not increase over the 4 year period. Silt, clay, total organic carbon, and SiO2 were the top edaphic factors that correlated with ARG abundance. Overall, this study identifies that human activity and certain soil characteristics correlate with antibiotic resistance genes in these oligotrophic Antarctic soils and provides a baseline of ARGs and MGEs for future comparisons.


Subject(s)
Anti-Bacterial Agents/pharmacology , Soil , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Silicon Dioxide/pharmacology
4.
Nature ; 526(7571): E2-3, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26432255

Subject(s)
Climate , Hydrology
5.
PLoS One ; 10(3): e0119966, 2015.
Article in English | MEDLINE | ID: mdl-25799273

ABSTRACT

Given the diminished role of biotic interactions in soils of continental Antarctica, abiotic factors are believed to play a dominant role in structuring of microbial communities. However, many ice-free regions remain unexplored, and it is unclear which environmental gradients are primarily responsible for the variations among bacterial communities. In this study, we investigated the soil bacterial community around Terra Nova Bay of Victoria Land by pyrosequencing and determined which environmental variables govern the bacterial community structure at the local scale. Six bacterial phyla, Actinobacteria, Proteobacteria, Acidobacteria, Chloroflexi, Cyanobacteria, and Bacteroidetes, were dominant, but their relative abundance varied greatly across locations. Bacterial community structures were affected little by spatial distance, but structured more strongly by site, which was in accordance with the soil physicochemical compositions. At both the phylum and species levels, bacterial community structure was explained primarily by pH and water content, while certain earth elements and trace metals also played important roles in shaping community variation. The higher heterogeneity of the bacterial community structure found at this site indicates how soil bacterial communities have adapted to different compositions of edaphic variables under extreme environmental conditions. Taken together, these findings greatly advance our understanding of the adaption of soil bacterial populations to this harsh environment.


Subject(s)
Bacteria/classification , Biodiversity , Genetic Variation , Seawater/microbiology , Soil Microbiology , Soil/chemistry , Antarctic Regions , Bacteria/genetics , DNA, Bacterial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
6.
Nature ; 508(7496): 378-82, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24695222

ABSTRACT

An interhemispheric hydrologic seesaw--in which latitudinal migrations of the Intertropical Convergence Zone (ITCZ) produce simultaneous wetting (increased precipitation) in one hemisphere and drying in the other--has been discovered in some tropical and subtropical regions. For instance, Chinese and Brazilian subtropical speleothem (cave formations such as stalactites and stalagmites) records show opposite trends in time series of oxygen isotopes (a proxy for precipitation variability) at millennial to orbital timescales, suggesting that hydrologic cycles were antiphased in the northerly versus southerly subtropics. This tropical to subtropical hydrologic phenomenon is likely to be an initial and important climatic response to orbital forcing. The impacts of such an interhemispheric hydrologic seesaw on higher-latitude regions and the global climate system, however, are unknown. Here we show that the antiphasing seen in the tropical records is also present in both hemispheres of the mid-latitude western Pacific Ocean. Our results are based on a new 550,000-year record of the growth frequency of speleothems from the Korean peninsula, which we compare to Southern Hemisphere equivalents. The Korean data are discontinuous and derived from 24 separate speleothems, but still allow the identification of periods of peak speleothem growth and, thus, precipitation. The clear hemispheric antiphasing indicates that the sphere of influence of the interhemispheric hydrologic seesaw over the past 550,000 years extended at least to the mid-latitudes, such as northeast Asia, and that orbital-timescale ITCZ shifts can have serious effects on temperate climate systems. Furthermore, our result implies that insolation-driven ITCZ dynamics may provoke water vapour and vegetation feedbacks in northern mid-latitude regions and could have regulated global climate conditions throughout the late Quaternary ice age cycles.


Subject(s)
Climate , Hydrology , History, Ancient , Ice Cover , Korea , Pacific Ocean , Rain , Time Factors , Tropical Climate
7.
Res Microbiol ; 162(10): 1018-26, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21839168

ABSTRACT

The microbial community (bacterial, archaeal, and fungi) and eight genes involved in the nitrogen biogeochemical cycle (nifH, nitrogen fixation; bacterial and archaeal amoA, ammonia oxidation; narG, nitrate reduction; nirS, nirK, nitrite reduction; norB, nitric oxide reduction; and nosZ, nitrous oxide reduction) were quantitatively assessed in this study, via real-time PCR with DNA extracted from three Antarctic soils. Interestingly, AOB amoA was found to be more abundant than AOA amoA in Antarctic soils. The results of microcosm studies revealed that the fungal and archaeal communities were diminished in response to warming temperatures (10 °C) and that the archaeal community was less sensitive to nitrogen addition, which suggests that those two communities are well-adapted to colder temperatures. AOA amoA and norB genes were reduced with warming temperatures. The abundance of only the nifH and nirK genes increased with both warming and the addition of nitrogen. NirS-type denitrifying bacteria outnumbered NirK-type denitrifiers regardless of the treatment used. Interestingly, dramatic increases in both NirS and NirK-types denitrifiers were observed with nitrogen addition. NirK types increase with warming, but NirS-type denitrifiers tend to be less sensitive to warming. Our findings indicated that the Antarctic microbial nitrogen cycle could be dramatically altered by temperature and nitrogen, and that warming may be detrimental to the ammonia-oxidizing archaeal community. To the best of our knowledge, this is the first report to investigate genes associated with each process of the nitrogen biogeochemical cycle in an Antarctic terrestrial soil environment.


Subject(s)
Nitrogen Cycle/genetics , Nitrogen/metabolism , Soil Microbiology , Temperature , Ammonia/metabolism , Antarctic Regions , Archaea/genetics , Bacteria/genetics , Climate Change , Cold Temperature , Fungi/genetics , Genes, Archaeal , Genes, Bacterial , Genes, Fungal , Geologic Sediments/microbiology , Nitrogen Fixation , Nitrous Oxide/analysis , Oxidation-Reduction , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...