Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 266
Filter
1.
J Neurogastroenterol Motil ; 30(3): 259-271, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38972863

ABSTRACT

Background/Aims: Gastroesophageal reflux disease (GERD) is typically managed based on the clinical phenotype. We evaluated the efficacy and safety of potassium-competitive acid blockers (PCABs) in patients with various clinical GERD phenotypes. Methods: Core databases were searched for studies comparing PCABs and proton pump inhibitors (PPIs) in clinical GERD phenotypes of erosive reflux disease (ERD), non-erosive reflux disease (NERD), PPI-resistant GERD and night-time heartburn. Additional analysis was performed based on disease severity and drug dosage, and pooled efficacy was calculated. Results: In 9 randomized controlled trials (RCTs) evaluating the initial treatment of ERD, the risk ratio for healing with PCABs versus PPIs was 1.09 (95% CI, 1.04-1.13) at 2 weeks and 1.03 (95% CI, 1.00-1.07) at 8 weeks, respectively. PCABs exhibited a significant increase in both initial and sustained healing of ERD compared to PPIs in RCTs, driven particularly in severe ERD (Los Angeles grade C/D). In 3 NERD RCTs, PCAB was superior to placebo in proportion of days without heartburn. Observational studies on PPI-resistant symptomatic GERD reported symptom frequency improvement in 86.3% of patients, while 90.7% showed improvement in PPIresistant ERD across 5 observational studies. Two RCTs for night-time heartburn had different endpoints, limiting meta-analysis. Pronounced hypergastrinemia was observed in patients treated with PCABs. Conclusions: Compared to PPIs, PCABs have superior efficacy and faster therapeutic effect in the initial and maintenance therapy of ERD, particularly severe ERD. While PCABs may be an alternative treatment option in NERD and PPI-resistant GERD, findings were inconclusive in patients with night-time heartburn.

2.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
3.
Adv Mater ; : e2403273, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742630

ABSTRACT

Based on experimental and computational evidence, phthalocyanine (Pc) compounds in the form of quaternary-bound metal-nitrogen (N) atoms are the most effective catalysts for oxygen reduction reaction (ORR). However, the heat treatment process used in their synthesis may compromise the ideal structure, causing the agglomeration of transition metals. To overcome this issue, a novel method is developed for synthesizing iron (Fe) single-atom catalysts with ideal structures supported by thermally exfoliated graphene oxide (GO). This is achieved through a short heat treatment of only 2.5 min involving FePc and N, N-dimethylformamide in the presence of GO. According to the synthesis mechanism revealed by this study, carbon monoxide acts as a strong linker between the single Fe atoms and graphene. It facilitates the formation of a structure containing oxygen species between FeN4 and graphene, which provides high activity and stability for the ORR. These catalysts possess an enormous number of active sites and exhibit enhanced activity toward the alkaline ORR. They demonstrate excellent performance when applied to real electrochemical devices, such as zinc-air batteries and anion exchange membrane fuel cells. It is expected that the instantaneous heat treatment method developed in this study will aid in the development of high-performing single-atom catalysts.

4.
Small ; : e2400638, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804126

ABSTRACT

The lithium deposited via the complex electrochemical heterogeneous lithium deposition reaction (LDR) process on a lithium foil-based anode (LFA) forms a high-aspect-ratio shape whenever the reaction kinetics reach its limit, threatening battery safety. Thereby, a research strategy that boosts the LDR kinetics is needed to construct a high-power and safe lithium metal anode. In this study, the kinetic limitations of the LDR process on LFA are elucidated through operando and ex situ observations using in-depth electrochemical analyses. In addition, ultra-thin (≈0.5 µm) and high modulus (≥19 GPa) double-walled carbon nanotube (DWNT) membranes with different surface properties are designed to catalyze high-safety LDRs. The oxygen-functionalized DWNT membranes introduced on the LFA top surface simultaneously induce multitudinous lithium nuclei, leading to film-like lithium deposition even at a high current density of 20 mA cm-2. More importantly, the layer-by-layer assembly of the oxygen-functionalized and pristine DWNT membranes results in different surface energies between the top and bottom surfaces, enabling selective surface LDRs underneath the high-modulus bilayer membranes. The protective LDR on the bilayer-covered LFA guarantees an invulnerable cycling process in large-area pouch cells at high current densities for more than 1000 cycles, demonstrating the practicability of LFA in a conventional liquid electrolyte system.

5.
Clin Orthop Surg ; 16(2): 313-321, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38562625

ABSTRACT

Background: Although several techniques for the treatment of ulnar impaction syndrome (UIS) have been introduced, there have still been reports on various complications such as delayed union, nonunion, refracture, wrist pain, plate irritation, and chronic regional pain syndrome. This study aimed to compare the differences in radiological and clinical outcomes of patients in which intramedullary bone grafting was performed in addition to plate stabilization with those without additional bone grafting during ulnar shortening osteotomies (USOs). Methods: Between November 2014 and June 2021, 53 wrists of 50 patients with idiopathic UIS were retrospectively reviewed. Patients were divided into 2 groups according to whether intramedullary bone grafting was performed. Among the 53 wrists, USO with an intramedullary bone graft was performed in 21 wrists and USO without an intramedullary bone graft was performed in 32 wrists. Demographic data and factors potentially associated with bone union time were analyzed. Results: There was no significant difference between the 2 groups when comparing postoperative radioulnar distance, postoperative ulnar variance, amount of ulnar shortening, and postoperative Disabilities of the Arm, Shoulder and Hand score. Compared to the without-intramedullary bone graft group, bone union time of the osteotomy site was significantly shortened, from 8.8 ± 3.0 weeks to 6.7 ± 1.3 weeks in the with-intramedullary bone graft group. Moreover, there were no cases of nonunion or plate-induced symptoms. Both in univariable and multivariable analyses, intramedullary bone grafting was associated with shorter bone union time. Conclusions: USO with an intramedullary bone graft for idiopathic UIS has favorable radiological and clinical outcomes. The advantage of this technique is the significant shortening of bone union time.


Subject(s)
Joint Diseases , Wrist Joint , Humans , Retrospective Studies , Wrist Joint/diagnostic imaging , Wrist Joint/surgery , Bone Transplantation , Treatment Outcome , Ulna/diagnostic imaging , Ulna/surgery , Joint Diseases/surgery , Osteotomy/methods
6.
Medicina (Kaunas) ; 60(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38399593

ABSTRACT

Background and Objectives: The surge in breast-related surgeries in Korea underscores the critical need for an accurate early diagnosis of silicone breast implant-related issues. Complications such as BIA-ALCL and BIA-SCC add complexity to breast health concerns, necessitating vigilant monitoring. Despite advancements, discrepancies persist between ultrasonographic and pathologic classifications of silicone implant ruptures, highlighting a need for enhanced diagnostic tools. This study explores the reliability of ultrasonography in diagnosing silicone breast implant ruptures and determining the extent of silicone migration, specifically with a focus on guiding potential capsulectomy based on pathology. Materials and Methods: A comprehensive review of medical records encompassing 5557 breast implants across 2790 patients who underwent ultrasound-assisted examinations was conducted. Among the screened implants, 8.9% (249 cases) were diagnosed with silicone breast implant rupture through ultrasonography. Subsequently, 89 women underwent revisional surgery, involving capsulectomy. The pathological analysis of 111 periprosthetic capsules from these cases aimed to assess the extent of silicone migration, and the findings were juxtaposed with the existing ultrasonographic rupture classification. Results: The diagnostic agreement between preoperative sonography and postoperative findings reached 100% for silicone breast implant ruptures. All eighty prosthetic capsules exhibiting a snowstorm sign in ultrasonography demonstrated silicone migration to capsules upon pathologic findings. Conclusions: High-resolution ultrasonography emerged as a valuable and reliable imaging modality for diagnosing silicone breast implant ruptures, with a notable ability to ascertain the extent of free silicone migration to capsules. This diagnostic precision is pivotal in informing decisions about potential capsulectomy during revisional surgery. The study advocates for an update to the current binary ultrasonographic classification, suggesting a more nuanced categorization into three types (subcapsular, intracapsular, and extracapsular) based on pathology.


Subject(s)
Breast Implants , Female , Humans , Breast Implants/adverse effects , Silicones/adverse effects , Point-of-Care Systems , Reproducibility of Results , Prosthesis Failure , Ultrasonography , Rupture , Magnetic Resonance Imaging/methods
7.
J Clin Med ; 13(2)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276140

ABSTRACT

BACKGROUND: This study analyzed the effects of topical anti-glaucoma medications on the surgical outcomes of endoscopic dacryocystorhinostomy (EDCR) in nasolacrimal duct obstruction (NLDO). METHODS: This retrospective study included patients who underwent EDCR for NLDO between September 2012 and April 2021. Thirty patients with topical anti-glaucoma medications and 90 age- and sex-matched controls were included. RESULTS: The success rate of EDCR was higher in the control group than in the anti-glaucoma group (97.8% vs. 86.7%, p = 0.034). Univariate and multivariate logistic regression analyses identified prostaglandin analogs as the most influential risk factor for EDCR success among anti-glaucoma medication ingredients (p = 0.005). The success rate of the group containing all four anti-glaucoma medication ingredients was statistically significant (p = 0.010). The success rate was significantly different in the group of patients who used anti-glaucoma medication for >24 months (p = 0.019). When multiplying the number of drug ingredients by the duration in months, the group > 69 showed a significantly decreased success rate (p = 0.022). Multivariate logistic regression analysis identified the number of anti-glaucoma medications as the most significant risk factor for EDCR success (odds ratio, 0.437; 95% confidence interval, 0.247 to 0.772; p = 0.004). CONCLUSIONS: The authors suggest that the anti-glaucoma medications might cause NLDO and increase the failure rate after EDCR. Therefore, when performing EDCR in patients using topical anti-glaucoma medications, surgeons should consider the possibility of increased recurrence after EDCR in clinical outcomes.

8.
Adv Mater ; 36(19): e2311312, 2024 May.
Article in English | MEDLINE | ID: mdl-38145390

ABSTRACT

Polyolefin separators are the most common separators used in rechargeable lithium (Li)-ion batteries. However, the influence of different polyolefin separators on the performance of Li metal batteries (LMBs) has not been well studied. By performing particle injection simulations on the reconstructed three-dimensional pores of different polyethylene separators, it is revealed that the pore structure of the separator has a significant impact on the ion flux distribution, the Li deposition behavior, and consequently, the cycle life of LMBs. It is also discovered that the homogeneity factor of Li-ion toward Li metal electrode is positively correlated to the longevity and reproducibility of LMBs. This work not only emphasizes the importance of the pore structure of polyolefin separators but also provides an economic and effective method to screen favorable separators for LMBs.

9.
J Am Chem Soc ; 145(49): 26632-26644, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38047734

ABSTRACT

The water oxidation reaction, the most important reaction for hydrogen production and other sustainable chemistry, is efficiently catalyzed by the Mn4CaO5 cluster in biological photosystem II. However, synthetic Mn-based heterogeneous electrocatalysts exhibit inferior catalytic activity at neutral pH under mild conditions. Symmetry-broken Mn atoms and their cooperative mechanism through efficient oxidative charge accumulation in biological clusters are important lessons but synthesis strategies for heterogeneous electrocatalysts have not been successfully developed. Here, we report a crystallographically distorted Mn-oxide nanocatalyst, in which Ir atoms break the space group symmetry from I41/amd to P1. Tetrahedral Mn(II) in spinel is partially replaced by Ir, surprisingly resulting in an unprecedented crystal structure. We analyzed the distorted crystal structure of manganese oxide using TEM and investigated how the charge accumulation of Mn atoms is facilitated by the presence of a small amount of Ir.

10.
Article in English | MEDLINE | ID: mdl-38015616

ABSTRACT

In-depth understanding of the lithium interaction characteristics within multidomain silicon suboxide is indispensable for optimizing the electrochemical performance of silicon suboxide anode materials for lithium-ion batteries. In this study, we investigate the domain-dependent thermodynamic and kinetic properties of lithium atoms within systematically designed multidomain silicon suboxide models composed of Si, SiO2, and Si/SiO2 interface by performing a series of computational simulations combined with a unique tomography-like sampling scheme. We find that the Si/SiO2 interfacial region exhibits preferential thermodynamics and kinetics for lithiation and can serve as a critical lithium transport channel during charge-discharge cycles, while the SiO2 domain is likely to be excluded from lithiation due to its high resistance to lithium diffusion. Consequently, a significant fraction of lithium is expected to be trapped at the Si/SiO2 interface during the discharge process, which ultimately contributes to a low initial Coulombic efficiency. This theoretical understanding suggests that the formation of continuously connected lithium-transportable Si/SiO2 interfacial channels surrounding the Si domains, along with a well-structured shallow SiO2 framework through the use of appropriate synthesis methods, is essential for maximizing the electrochemical performance of silicon suboxide anode materials.

11.
Food Sci Nutr ; 11(10): 6616-6625, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37823139

ABSTRACT

Ampelopsis brevipedunculata (Maxim.) Trautv. has been used for a long time as a folk remedy. According to studies, it possesses anti-inflammatory, antioxidant, and antibacterial properties. However, its effects on atopic dermatitis (AD) are poorly studied. Thus, we investigated the therapeutic effect of A. brevipedunculata (Maxim.) Trautv. extract (ABE-M) on 2,4-dinitrochlorobenzene (DNCB)-induced AD. For in vitro analysis, keratinocytes cell lines (HaCaT cells) were used. To evaluate the gene and protein expression levels of cytokines and chemokines, TNF-α/IFN-γ-stimulated HaCaT cells were treated with ABE-M. The cells and the supernatant were collected, then gene and protein levels were analyzed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay analysis. For in vivo analysis, BALB/c mice (6 weeks) were randomly separated into five groups (n = 5). The mice were applied DNCB and phosphate-buffered saline, dexamethasone (DX) or ABE-M (50, 100, and 200 mg/kg) was orally administrated for 28 days. At the end, ear tissues and blood were collected for histological analysis and evaluation of cytokines and chemokines. In keratinocytes, ABE-M inhibited the protein and mRNA levels of chemokines, and cytokines exposed by TNF-α/IFN-γ. Similarly, the expression of chemokines was suppressed by ABE-M in AD animal model induced by DNCB and the level of pro-inflammatory cytokines was decreased in a dose-dependent manner. Our research indicates that ABE-M could be a candidate material that can be used to improve skin immunity enhancement, health, and beauty.

12.
Sci Rep ; 13(1): 17053, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37816853

ABSTRACT

To identify the usefulness of vertical asymmetry analysis of the retinal microvasculature in epiretinal membrane (ERM) patients accompanied by open-angle glaucoma (OAG). Subjects were divided into three groups: normal controls (group 1), patients with ERM (group 2), and patients with both ERM and OAG (group 3). Retinal nerve fiber layer (pRNFL) and ganglion cell-inner plexiform layer (GC-IPL) thicknesses, vessel density (VD), and the absolute vertical difference of pRNFL (vdRNFL), GC-IPL (vdGC-IPL), and VD (vdVD) were compared among groups. Logistic regression analysis was performed to determine the factors associated with OAG. Diagnostic accuracy based on the area under the curve (AUC) was conducted. The VD of the full area was 20.9 ± 1.2, 20.0 ± 1.9, and 18.8 ± 2.2 mm-1 (P < 0.001) for groups 1, 2, and 3, respectively. The vdVD differed significantly between group 2 and group 3 (P < 0.001), whereas vdRNFL (P = 0.531) and vdGC-IPL (P = 0.818) did not show a significant difference. Multivariate logistic analyses showed that average pRNFL thickness (OR 0.924, P = 0.001) and vdVD (OR 5.673, P < 0.001) were significant factors associated with OAG in ERM patients. The AUC of the vdVD was 0.81 (95% CI 0.72-0.89), and the combination of average pRNFL thickness and vdVD had the highest AUC (0.87; 95% CI 0.78-0.95; P < 0.001). ERM patients with OAG had a significantly thinner pRNFL thickness, lower macular VD, and higher vdVD than those without OAG. Average pRNFL thickness and vdVD were significant factors associated with OAG in patients with ERM. Additionally, the combination of average pRNFL thickness and vdVD showed good diagnostic performance for OAG in patients with ERM.


Subject(s)
Epiretinal Membrane , Glaucoma, Open-Angle , Humans , Glaucoma, Open-Angle/diagnosis , Intraocular Pressure , Retinal Ganglion Cells , Microvessels/diagnostic imaging , Tomography, Optical Coherence
13.
PLoS One ; 18(10): e0292942, 2023.
Article in English | MEDLINE | ID: mdl-37851656

ABSTRACT

PURPOSE: To identify how the inner retinal layer and microvasculature change with age by analyzing the relationships of ganglion cell-inner plexiform layer (GC-IPL) thickness, vessel density (VD), and the ratio of these measurements with age in healthy eyes. METHODS: Participants were divided into five groups according to age. The GC-IPL thickness, VD, and GC-IPL/VD ratio were compared among the groups. Linear regression analyses were performed to identify relationships of GC-IPL/VD ratio with age. RESULTS: The average GC-IPL thicknesses were 84.84 ± 5.28, 84.22 ± 5.30, 85.20 ± 6.29, 83.29 ± 7.06, and 82.26 ± 5.62 µm in the 20s, 30s, 40s, 50s, and 60s age groups, respectively. The VDs were 20.94 ± 1.50, 21.06 ± 1.50, 20.99 ± 1.03, 20.71 ± 0.93, and 19.74 ± 1.73 mm-1 in the 20s, 30s, 40s, 50s, and 60s age groups, respectively. The GC-IPL/VD ratio was 4.05, 4.00, 4.06, 4.02, and 4.17 in each group, respectively, and the ratio of the 60s age group was significantly higher than that of other groups. In linear regression analyses, the GC-IPL/VD ratio was significantly associated with age in the participants aged ≥ 50 years (B = 0.014, P = 0.013), whereas it was not in the participants aged < 50 years (B = 0.003, P = 0.434). CONCLUSIONS: GC-IPL thickness and macular VD showed a tendency to decrease beginning in the 50s age group and the GC-IPL/VD ratio was significantly increased in the 60s age group. Additionally, the GC-IPL/VD ratio was positively associated with age in subjects aged ≥ 50 years, which implies a more pronounced decline over time in VD rather than GC-IPL thickness.


Subject(s)
Retinal Ganglion Cells , Tomography, Optical Coherence , Humans , Middle Aged , Nerve Fibers , Retina , Microvessels
14.
Chem Commun (Camb) ; 59(53): 8298-8301, 2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37318519

ABSTRACT

Despite extensive development, oxygen evolution reaction (OER) catalysts still require significant overpotentials to function. In this study, we show that the overpotential of a nickel (Ni) electrode for the OER can decrease by about 100 mV with fluorine (F) incorporation, particularly by a facile electrochemical approach at room temperature.


Subject(s)
Fluorine , Nickel , Electrodes , Oxygen
15.
Medicina (Kaunas) ; 59(6)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37374297

ABSTRACT

Background and Objectives: With the emergence of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), it has become necessary to identify the implant shell type patients have received. Therefore, an immediate, reliable method for identifying a breast implant shell type is essential. Evidence-based research and applying a real-world technique that identifies the surface topographic information of the inserted breast implants, without surgery, has become of paramount importance for breast implant physicians. Methods and Materials: A review of the medical records of 1901 patients who received 3802 breast implants and subsequently received an ultrasound-assisted examination was performed. All patients received not only a breast cancer examination but also a high-resolution ultrasonography (HRUS) assisted examination of the device at a single center between 31 August 2017 and 31 December 2022. Results: Most patients had breast implants within 10 years (77.7%) of the examination. Of the 3802 implants screened, 2034 (53.5%) were identified with macro-textured shell topography in ultrasonography. A macrotextured shell type implant was used in 53.5% of cases and a smooth type in 42.7% of cases. Seventy-three (1.9%) breast implant shell types could not be identified due to ruptures. However, 250 breast implant shell types could be identified despite rupture cases (6.5%). Conclusions: HRUS was found to be a useful and reliable image modality for identifying various surface shell types of breast implants. The shell type information would be helpful to patients who lack information about their breast implants and are concerned about BIA-ALCL.


Subject(s)
Breast Implantation , Breast Implants , Breast Neoplasms , Female , Humans , Breast Implantation/methods , Breast Implants/adverse effects , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Breast Neoplasms/pathology , Ultrasonography
16.
Adv Sci (Weinh) ; 10(24): e2301381, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37357986

ABSTRACT

Composite anodes of Li3 PS4  glass+Li-Si alloy (Type 1) and Li3 N+LiF+Li-Si alloy (Type 2) are prepared for all-solid-state batteries with Li3 PS4 (LPS) glass electrolyte and sulfur/LPS glass/carbon composite cathode. Using a three-electrode system, the anode and cathode potentials are separated, and their polarization resistances are individually traced. Even under high-cutoff-voltage conditions (3.7 V), Type 1 and 2 cells are stably cycled without voltage noise for >200 cycles. Although cathode polarization resistance drastically increases after 3.7 V charge owing to LPS oxidation, LPS redox behavior is fairly reversible upon discharge-charge unlike the non-composite alloy anode cell. Time-of-flight secondary ion mass spectrometry analysis reveals that the enhanced cyclability is attributed to uniform Li-Si alloying throughout the composite anode, providing more pathways for lithium ions even when these ions are over-supplied via LPS oxidation. These results imply that LPS-based cells can be reversibly cycled with LPS redox even under high-cutoff voltages, as long as non-uniform alloying (lithium dendrite growth) is prevented. Type 1 and 2 cells exhibit similar performance and stability although reduction product is formed in Type 1. This work highlights the importance of alloy anode design to prevent chemo-mechanical failure when cycling the cell outside the electrochemical stability window.

17.
BMB Rep ; 56(5): 314-319, 2023 May.
Article in English | MEDLINE | ID: mdl-37013347

ABSTRACT

Sepsis is a life-threatening multi-organ dysfunction with high mortality caused by the body's improper response to microbial infection. No new effective therapy has emerged that can adequately treat patients with sepsis. We previously demonstrated that interferon-ß (IFN-ß) protects against sepsis via sirtuin 1-(SIRT1)-mediated immunosuppression. Another study also reported its significant protective effect against acute respiratory distress syndrome, a complication of severe sepsis, in human patients. However, the IFN-ß effect cannot solely be explained by SIRT1-mediated immunosuppression, since sepsis induces immunosuppression in patients. Here, we show that IFN-ß, in combination with nicotinamide riboside (NR), alleviates sepsis by blocking endothelial damage via SIRT1 activation. IFN-ß plus NR protected against cecal ligation puncture-(CLP)-induced sepsis in wild-type mice, but not in endothelial cell-specific Sirt1 knockout (EC-Sirt1 KO) mice. IFN-ß upregulated SIRT1 protein expression in endothelial cells in a protein synthesisindependent manner. IFN-ß plus NR reduced the CLP-induced increase in in vivo endothelial permeability in wild-type, but not EC-Sirt1 KO mice. IFN-ß plus NR suppressed lipopolysaccharide-induced up-regulation of heparinase 1, but the effect was abolished by Sirt1 knockdown in endothelial cells. Our results suggest that IFN-ß plus NR protects against endothelial damage during sepsis via activation of the SIRT1/heparinase 1 pathway. [BMB Reports 2023; 56(5): 314-319].


Subject(s)
Sepsis , Sirtuin 1 , Humans , Animals , Mice , Sirtuin 1/metabolism , Interferon-beta , Endothelial Cells/metabolism , Glycocalyx/metabolism , Heparin Lyase , Sepsis/drug therapy , Sepsis/metabolism , Mice, Inbred C57BL
18.
Heliyon ; 9(2): e12994, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36793948

ABSTRACT

Vigna angularis is an edible crop and herbal medicine that is known to have antipyretic, anti-inflammatory, and anti-edema effects. Many studies have been conducted on the 95% ethanol extract of V. angularis, but there is little research on the 70% ethanol extract and hemiphloin, which is a new indicator component of the 70% ethanol extract of V. angularis. To investigate the in vitro anti-atopic effect and verify the mechanism action of 70% ethanol extract of V. angularis (VAE), TNF-α/IFN-γ-induced HaCaT keratinocytes were used. The VAE treatment alleviated TNF-α/IFN-γ-induced IL-1ß, IL-6, IL-8, CCL17/TARC, and CCL22/MDC gene expressions and productions. VAE also inhibited the phosphorylation of MAPKs, including p38, ERK, JNK, STAT1, and NF-κB in TNF-α/IFN-γ-induced HaCaT cells. 2,4-dinitochlorobenzene (DNCB)-induced skin inflammation mice model, and HaCaT keratinocytes were used. In the DNCB-induced mouse model, VAE treatment alleviated ear thicknesses and IgE levels. Furthermore, VAE decreased IL-1ß, IL-6, IL-8, CCL17/TARC, and CCL22/MDC gene expressions of DNCB-applied ear tissue. Additionally, we investigated the anti-atopic and anti-inflammatory effects of hemiphloin using TNF-α/IFN-γ-induced HaCaT keratinocytes and LPS-induced J774 macrophages. Treatment hemiphloin decreased gene expressions and productions of IL-1ß, IL-6, IL-8, CCL17/TARC, and CCL22/MDC in TNF-α/IFN-γ-induced HaCaT cells. The phosphorylations of p38, ERK, STAT1, and NF-κB were inhibited by hemiphloin in TNF-α/IFN-γ-induced HaCaT cells. Finally, hemiphloin showed anti-inflammatory activities in LPS-induced J774 cells. It decreased LPS-induced NO productions and iNOS and COX-2 expressions. Treatment of hemiphloin also inhibited LPS-induced TNF-α, IL-1ß, and IL-6 gene expressions. These results suggest that VAE is an anti-inflammatory agent for inflammatory skin diseases and that hemiphloin could be a therapeutic candidate for inflammatory skin diseases.

19.
Adv Mater ; 35(12): e2209128, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36625665

ABSTRACT

The galvanostatic lithiation/sodiation voltage profiles of hard carbon anodes are simple, with a sloping drop followed by a plateau. However, a precise understanding of the corresponding redox sites and storage mechanisms is still elusive, which hinders further development in commercial applications. Here, a comprehensive comparison of the lithium- and sodium-ion storage behaviors of hard carbon is conducted, yielding the following key findings: 1) the sloping voltage section is presented by the lithium-ion intercalation in the graphitic lattices of hard carbons, whereas it mainly arises from the chemisorption of sodium ions on their inner surfaces constituting closed pores, even if the graphitic lattices are unoccupied; 2) the redox sites for the plateau capacities are the same as those for the closed pores regardless of the alkali ions; 3) the sodiation plateau capacities are mostly determined by the volume of the available closed pore, whereas the lithiation plateau capacities are primarily affected by the intercalation propensity; and 4) the intercalation preference and the plateau capacity have an inverse correlation. These findings from extensive characterizations and theoretical investigations provide a relatively clear elucidation of the electrochemical footprint of hard carbon anodes in relation to the redox mechanisms and storage sites for lithium and sodium ions, thereby providing a more rational design strategy for constructing better hard carbon anodes.

20.
Ultrasonics ; 129: 106909, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36495768

ABSTRACT

This paper presents a spectral noise and data reduction technique based on long short-term memory (LSTM) network for nonlinear ultrasonic modulation-based fatigue crack detection. The amplitudes of the nonlinear modulation components created by a micro fatigue crack are often very small and masked by noise. In addition, the collection of large amounts of data is often undesirable owing to the limited power, data storage, and data transmission bandwidth of monitoring systems. To tackle the issues, an LSTM network was applied to ultrasonic signals to reduce the noise level and the amount of data. The proposed technique offers the following benefits: (1) spectral noise reduction using the LSTM network for ultrasonic signals and (2) data reduction without compromising the spectral density amplitude of the existing nonlinear modulation components. Finally, the performance evaluation was conducted using the data obtained from complex geometry and real structure under external noises, indicating that the proposed method can be applied to various structures.

SELECTION OF CITATIONS
SEARCH DETAIL
...