Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 29(16): 2275-2282, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31253533

ABSTRACT

As a potential treatment of type 2 diabetes, a novel PPARγ non-TZD full agonist, compound 18 (BR102375) was identified from the original lead BR101549 by the SAR efforts of the labile metabolite control through bioisosteres approach. In vitro assessments of BR102375 demonstrated its activating potential of PPARγ comparable to Pioglitazone as well as the induction of related gene expressions. Further in vivo evaluation of BR102375 in diabetic rodent models successfully proved its glucose lowering effect as a potential antidiabetic agent, but the anticipated suppression of weight gain was not evident. The X-ray co-crystal analysis of BR102375-PPARγ LBD unexpectedly revealed binding modes totally different from those of BR101549, which was found, instead, closely resembled to those of TZD full agonists.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Drug Discovery , Hypoglycemic Agents/pharmacology , Oxadiazoles/pharmacology , PPAR gamma/agonists , Crystallography, X-Ray , Diabetes Mellitus, Type 2/metabolism , Dose-Response Relationship, Drug , Humans , Hypoglycemic Agents/chemical synthesis , Hypoglycemic Agents/chemistry , Models, Molecular , Molecular Structure , Oxadiazoles/chemistry , PPAR gamma/metabolism , Structure-Activity Relationship
2.
Bioorg Med Chem Lett ; 29(4): 631-637, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30594432

ABSTRACT

The new class of PPARgamma non-TZD agonist originally derived from the backbone of anti-hypertensive Fimasartan, BR101549, was identified as a potential lead for anti-diabetic drug development. The X-ray crystallography of BR101549 with PPARgamma ligand binding domain (LBD) revealed unique binding characteristics versus traditional TZD full agonists. The lead candidate, BR101549, has been found activating PPARgamma to the level of Pioglitazone in vitro and indeed has demonstrated its effects on blood glucose control in mouse proof-of-concept evaluation. The attempts to improve its metabolic stability profile through follow-up SAR including deuterium incorporation have been also described.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Oxadiazoles/therapeutic use , PPAR gamma/agonists , Pyrimidines/therapeutic use , Pyrimidinones/therapeutic use , 3T3-L1 Cells , Animals , Humans , Mice , Proof of Concept Study , Pyrimidinones/pharmacology , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 28(19): 3155-3160, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30177375

ABSTRACT

Inspired by the well-known PPARγ partial agonism of angiotensin II type 1 receptor (AT1R) antagonists exemplified by an antihypertensive drug, Telmisartan, efforts to identify compounds with the dual activities have been pursued in order to control the two major metabolic disorders, hypertension and hyperglycemia simultaneously. Lead compound 18 derived from the AT1R antagonist, Fimasartan, has successfully presented the possibility to control the medical conditions by a single molecule.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Biphenyl Compounds/pharmacology , PPAR gamma/agonists , Pyrimidines/pharmacology , Tetrazoles/pharmacology , Angiotensin II Type 1 Receptor Blockers/chemistry , Angiotensin II Type 1 Receptor Blockers/pharmacokinetics , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacokinetics , Antihypertensive Agents/pharmacology , Area Under Curve , Biphenyl Compounds/chemistry , Biphenyl Compounds/pharmacokinetics , Disease Models, Animal , Drug Discovery , Drug Partial Agonism , Half-Life , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Proof of Concept Study , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Structure-Activity Relationship , Tetrazoles/chemistry , Tetrazoles/pharmacokinetics
4.
J Transl Med ; 15(1): 35, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28202074

ABSTRACT

BACKGROUND: Diminished wound healing is a major complication of diabetes mellitus and can lead to foot ulcers. However, there are limited therapeutic methods to treat this condition. Exendin-4 (Ex-4), a glucagon-like peptide-1 receptor agonist, is known to have many beneficial effects on diabetes. In addition, mesenchymal stem cells are known to have wound healing effects. We investigated the effects of Ex-4 in combination with human adipose tissue-derived stem cells (ADSCs) on diabetic wound healing in a diabetic animal model. METHODS: Diabetic db/db (blood glucose levels, >500 mg/dl) or C57BL/6 mice were subjected to wounding on the skin of the back. One day after wounding, each wound received ADSCs (2.5 × 105 cells) injected intradermally around the wound and/or Ex-4 (50 µl of 100 nM Ex-4) topically applied on the wound with a fine brush daily. Wound size was monitored and wound histology was examined. Human endothelial cells and keratinocyte cells were used to assess angiogenesis and vascular endothelial growth factor expression in vitro. RESULTS: Topical administration of Ex-4 or injection of ADSCs resulted in a rapid reduction of wound size in both diabetic and normoglycemic animals compared with vehicle treatment. Histological analysis also showed rapid skin reconstruction in Ex-4-treated or ADSC-injected wounds. A combination of Ex-4 and ADSCs showed a significantly better therapeutic effect over either treatment alone. In vitro angiogenesis assays showed that both Ex-4 and ADSC-conditioned media (CM) treatment improved migration, invasion and proliferation of human endothelial cells. ADSC-CM also increased migration and proliferation of human keratinocytes. In addition, both Ex-4 and ADSC-CM increased the expression of vascular endothelial growth factor. Co-culture with ADSCs increased migration and proliferation of these cells similar to that found after ADSC-CM treatment. CONCLUSIONS: We suggest that Ex-4 itself is effective for the treatment of diabetic skin wounds, and a combination of topical treatment of Ex-4 and injection of ADSCs has a better therapeutic effect. Thus, a combination of Ex-4 and ADSCs might be an effective therapeutic option for the treatment of diabetic wounds, such as foot ulcers.


Subject(s)
Adipose Tissue/cytology , Diabetes Mellitus/therapy , Neovascularization, Physiologic , Peptides/therapeutic use , Stem Cell Transplantation , Stem Cells/cytology , Venoms/therapeutic use , Wound Healing , Animals , Cell Movement/drug effects , Cell Proliferation/drug effects , Culture Media, Conditioned/pharmacology , Diabetes Mellitus/pathology , Exenatide , Glucose/metabolism , Homeostasis/drug effects , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Keratinocytes/drug effects , Keratinocytes/metabolism , Male , Mice, Inbred C57BL , Neovascularization, Physiologic/drug effects , Peptides/pharmacology , Skin/drug effects , Skin/pathology , Vascular Endothelial Growth Factor A/metabolism , Venoms/pharmacology , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...