Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Dysmorphol ; 33(1): 43-49, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37865865

ABSTRACT

Argininosuccinate lyase (ASL) deficiency is an autosomal recessive disorder of the urea cycle with a diverse spectrum of clinical presentation that is detectable in newborn screening. We report an 8-year-old girl with ASL deficiency who was detected through newborn screening and was confirmed using biochemical and functional assay. She is compound heterozygous for a likely pathogenic variant NM_000048.4(ASL):c.283C>T (p.Arg95Cys) and a likely benign variant NM_000048.4(ASL): c.1319T>C (p.Leu440Pro). Functional characterisation of the likely benign genetic variant in ASL was performed. Genomic sequencing was performed on the index patient presenting with non-specific symptoms of poor feeding and lethargy and shown to have increased serum and urine argininosuccinic acid. Functional assay using HEK293T cell model was performed. ASL enzymatic activity was reduced for Leu440Pro. This study highlights the role of functional testing of a variant that may appear benign in a patient with a phenotype consistent with ASL deficiency, and reclassifies NM_000048.4(ASL): c.1319T>C (p.Leu440Pro) variant as likely pathogenic.


Subject(s)
Argininosuccinic Aciduria , Infant, Newborn , Female , Humans , Child , Argininosuccinic Aciduria/diagnosis , Argininosuccinic Aciduria/genetics , Argininosuccinate Lyase/genetics , Argininosuccinate Lyase/chemistry , Argininosuccinate Lyase/metabolism , Neonatal Screening , HEK293 Cells , Base Sequence
2.
BMC Med Genomics ; 11(1): 37, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615056

ABSTRACT

BACKGROUND: Lipid storage myopathy (LSM) is a diverse group of lipid metabolic disorders with great variations in the clinical phenotype and age of onset. Classical multiple acyl-CoA dehydrogenase deficiency (MADD) is known to occur secondary to mutations in electron transfer flavoprotein dehydrogenase (ETFDH) gene. Whole exome sequencing (WES) with clinical correlations can be useful in identifying genomic alterations for targeted therapy. CASE PRESENTATION: We report a patient presented with severe muscle weakness and exercise intolerance, suggestive of LSM. Diagnostic testing demonstrated lipid accumulation in muscle fibres and elevated plasma acyl carnitine levels. Exome sequencing of the proband and two of his unaffected siblings revealed compound heterozygous mutations, c.250G > A (p.Ala84Thr) and c.770A > G (p.Tyr257Cys) in the ETFDH gene as the probable causative mutations. In addition, a previously unreported variant c.1042C > T (p.Arg348Trp) in ACOT11 gene was found. This missense variant was predicted to be deleterious but its association with lipid storage in muscle is unclear. The diagnosis of MADD was established and the patient was treated with riboflavin which resulted in rapid clinical and biochemical improvement. CONCLUSIONS: Our findings support the role of WES as an effective tool in the diagnosis of highly heterogeneous disease and this has important implications in the therapeutic strategy of LSM treatment.


Subject(s)
Electron-Transferring Flavoproteins/genetics , Iron-Sulfur Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Oxidoreductases Acting on CH-NH Group Donors/genetics , Riboflavin/therapeutic use , Adolescent , Adult , Female , Heterozygote , Humans , Male , Middle Aged , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...