Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JMIR Form Res ; 7: e47325, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37548993

ABSTRACT

BACKGROUND: The rise in single-person households has resulted in social problems like loneliness and isolation, commonly known as "death by loneliness." Various factors contribute to this increase, including a desire for independent living and communication challenges within families due to societal changes. Older individuals living alone are particularly susceptible to loneliness and isolation due to limited family communication and a lack of social activities. Addressing these issues is crucial, and proactive solutions are needed. It is important to explore diverse measures to tackle the challenges of single-person households and prevent deaths due to loneliness in our society. OBJECTIVE: Non-face-to-face health care service systems have gained widespread interest owing to the rapid development of smart home technology. Particularly, a health monitoring system must be developed to manage patients' health status and send alerts for dangerous situations based on their activity. Therefore, in this study, we present a novel health monitoring system based on the auto-mapping method, which uses real-time position sensing mats. METHODS: The smart floor mats are operated as piezo-resistive devices, which are composed of a carbon nanotube-based conductive textile, electrodes, main processor circuit, and a mat. The developed smart floor system acquires real-time position information using a multiconnection method between the modules based on the auto-mapping algorithm, which automatically creates a spatial map. The auto-mapping algorithm allows the user to freely set various activity areas through floor mapping. Then, the monitoring system was evaluated in a room with an area of 41.3 m2, which is embedded with the manufactured floor mats and monitoring application. RESULTS: This monitoring system automatically acquires information on the total number, location, and direction of the mats and creates a spatial map. The position sensing mats can be easily configured with a simple structure by using a carbon nanotube-based piezo-resistive textile. The mats detect the activity in real time and record location information since they are connected through auto-mapping technology. CONCLUSIONS: This system allows for the analysis of patients' behavior patterns and the management of health care on the web by providing important basic information for activity patterns in the monitoring system. The proposed smart floor system can serve as the foundation for smart home applications in the future, which include health care, intelligent automation, and home security, owing to its advantages of low cost, large area, and high reliability.

2.
Polymers (Basel) ; 14(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35458301

ABSTRACT

Among the various wearable electronic devices, textile-based piezo sensors have emerged as the most attractive sensors for practical application. In this study, a conductive nonwoven fabric is fabricated to develop a textile-based piezo sensor. This high-performance fabric is fabricated by depositing multiwalled carbon nanotubes (MWCNTs) on cellulose nonwoven composites with carbon fibers (CNwCa) through a spray process to assign conductivity, followed by electrospinning thermoplastic polyurethane (TPU) on the MWCNT-coated CNwCa to improve surface durability. Each component is optimized through experiments to control the electrical and physical characteristics of the conductive nonwoven fabric. The static and dynamic piezoresistive properties of the fabricated MWCNT composite conductive nonwoven are measured using a source meter and the fabricated sensor driving circuitry. In addition, a prototype bag with a touch sensor is developed using the fabricated conductive nonwoven fabric and its touchpad function is demonstrated using an Android application. The operation as a mode-switchable touch sensor was experimentally verified by inserting the sensor into a bag so that it can be used without direct manipulation on a mobile device. The findings of this study suggest that the developed flexible textile-based conductive nonwoven fabric can be effectively used in wearable devices with piezoresistive sensors.

3.
ACS Nano ; 14(12): 16907-16918, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33275412

ABSTRACT

The colorimetric gas sensor offers an opportunity for the simple and rapid detection of toxic gaseous substances based on visually discernible changes in the color of the sensing material. In particular, the accurate detection of trace amounts of certain biomarkers in a patient's breath provides substantial clues regarding specific diseases, for example, hydrogen sulfide (H2S) for halitosis and ammonia (NH3) for kidney disorder. However, conventional colorimetric sensors often lack the sensitivity, selectivity, detection limit, and mass-productivity, impeding their commercialization. Herein, we report an inexpensive route for the meter-scale synthesis of a colorimetric sensor based on a composite nanofiber yarn that is chemically functionalized with an ionic liquid as an effective H2S adsorbent and lead acetate as a colorimetric dye. As an eye-readable and weavable sensing platform, the single-strand yarn exhibits enhanced sensitivity supported by its high surface area and well-developed porosity to detect the breath biomarker (1 ppm of H2S). Alternatively, the yarn loaded with lead iodide dyes could reversibly detect NH3 gas molecules in the ppm-level, demonstrating the facile extensibility. Finally, we demonstrated that the freestanding yarns could be sewn into patterned textiles for the fabrication of a wearable toxic gas alarm system with a visual output.

4.
Polymers (Basel) ; 12(11)2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33158285

ABSTRACT

For the immediate detection of strong gaseous alkalis and acids, colorimetric textile sensors based on halochromic dyes are highly valuable for monitoring gas leakages. To date, colorimetric textile sensors for dual-gas detection have usually been fabricated by electrospinning methods. Although nanofibrous sensors have excellent pH sensitivity, they are difficult to use commercially because of their low durability, low productivity, and high production costs. In this study, we introduce novel textile sensors with high pH sensitivity and durability via a facile and low-cost screen-printing method. To fabricate these textiles sensors, Dye 3 and RhYK dyes were both incorporated into a polyester fabric. The fabricated sensors exhibited high detection rates (<10 s) and distinctive color changes under alkaline or acidic conditions, even at low gas concentrations. Furthermore, the fabricated sensors showed an outstanding durability and reversibility after washing and drying and were confirmed to contain limited amounts of hazardous materials. Thus, our results show that the fabricated textile sensors could be used in safety apparel that changes its color in the presence of harmful gases.

5.
Polymers (Basel) ; 12(2)2020 Feb 12.
Article in English | MEDLINE | ID: mdl-32059393

ABSTRACT

For the immediate detection of gaseous strong acids, it is advantageous to employ colorimetric textile sensors based on halochromic dyes. Thus, a rhodamine dye with superior pH sensitivity and high thermal stability was synthesized and incorporated in nylon 6 and polyester fabrics to fabricate textile sensors through dyeing and printing methods. The spectral properties and solubility of the dye were examined; sensitivity to acidic gas as well as durability and reversibility of the fabricated textile sensors were investigated. Both dyed and printed sensors exhibited a high reaction rate and distinctive color change under the acidic condition owing to the high pH sensitivity of the dye. In addition, both sensors have outstanding durability and reversibility after washing and drying.

SELECTION OF CITATIONS
SEARCH DETAIL
...