Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723035

ABSTRACT

GTPase high frequency of lysogenization X (HflX) is highly conserved in prokaryotes and acts as a ribosome-splitting factor as part of the heat shock response in Escherichia coli. Here we report that HflX produced by slow-growing Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a GTPase that plays a critical role in the pathogen's transition to a nonreplicating, drug-tolerant state in response to hypoxia. Indeed, HflX-deficient M. bovis BCG (KO) replicated markedly faster in the microaerophilic phase of a hypoxia model that resulted in premature entry into dormancy. The KO mutant displayed hallmarks of nonreplicating mycobacteria, including phenotypic drug resistance, altered morphology, low intracellular ATP levels, and overexpression of Dormancy (Dos) regulon proteins. Mice nasally infected with HflX KO mutant displayed increased bacterial burden in the lungs, spleen, and lymph nodes during the chronic phase of infection, consistent with the higher replication rate observed in vitro in microaerophilic conditions. Unlike fast growing mycobacteria, M. bovis BCG HlfX was not involved in antibiotic resistance under aerobic growth. Proteomics, pull-down, and ribo-sequencing approaches supported that mycobacterial HflX is a ribosome-binding protein that controls translational activity of the cell. With HflX fully conserved between M. bovis BCG and M. tuberculosis, our work provides further insights into the molecular mechanisms deployed by pathogenic mycobacteria to adapt to their hypoxic microenvironment.


Subject(s)
DNA Replication , GTP Phosphohydrolases/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Mycobacterium/genetics , Mycobacterium/metabolism , Animals , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Mice , Mutation , Mycobacterium bovis/genetics , Mycobacterium bovis/metabolism , Ribosomes/metabolism
2.
Cell Rep Med ; 2(2): 100193, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33495757

ABSTRACT

Early detection of infection is crucial to limit the spread of coronavirus disease 2019 (COVID-19). Here we develop a flow cytometry-based assay to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein antibodies in individuals with COVID-19. The assay detects specific immunoglobulin M (IgM), IgA, and IgG in individuals with COVID-19 and also acquisition of all IgG subclasses, with IgG1 being the most dominant. The antibody response is significantly higher at a later stage of infection. Furthermore, asymptomatic individuals with COVID-19 also develop specific IgM, IgA, and IgG, with IgG1 being the most dominant subclass. Although the antibody levels are lower in asymptomatic infection, the assay is highly sensitive and detects 97% of asymptomatic infections. These findings demonstrate that the assay can be used for serological analysis of symptomatic and asymptomatic infections, which may otherwise remain undetected.


Subject(s)
Antibodies, Viral/blood , COVID-19/pathology , Immunoglobulin Class Switching/physiology , Immunoglobulin G/blood , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , Asymptomatic Diseases , COVID-19/immunology , COVID-19/virology , Flow Cytometry , Humans , Immunoglobulin G/immunology , Immunologic Tests/methods , SARS-CoV-2/isolation & purification
3.
Front Immunol ; 10: 2737, 2019.
Article in English | MEDLINE | ID: mdl-31824511

ABSTRACT

Tuberculosis (TB) pathogenesis is characterized by inadequate immune cell activation and delayed T cell response in the host. Recent immunotherapeutic efforts have been directed at stimulating innate immunity and enhancing interactions between antigen presenting cells and T cells subsets to improve the protective immunity against TB. In this study, we investigated the immunostimulatory properties of bacterial ghosts (BG) as a novel approach to potentiate the host immunity against mycobacterial infection. BG are intact cytoplasm-free Escherichia coli envelopes and have been developed as bacterial vaccines and adjuvant/delivery system in cancer immunotherapy. However, BG have yet to be exploited as immunopotentiators in the context of infectious diseases. Here, we showed that BG are potent inducers of dendritic cells (DC), which led to enhanced T cell proliferation and differentiation into effector cells. BG also induced macrophage activation, which was associated with enhanced nitric oxide production, a key anti-mycobacterial weapon. We further demonstrated that the immunostimulatory capability of BG far exceeds that of LPS and involves both TLR4-dependent and independent pathways. Consistently, BG treatment, but not LPS treatment, reduced the bacterial burden in infected mice, which correlated with increased influx of innate and adaptive effector immune cells and increased production of key cytokines in the lungs. Finally and importantly, enhanced bacilli killing was seen in mice co-administered with BG and second-line TB drugs bedaquiline and delamanid. Overall, this work paves the way for BG as potent immunostimulators that may be harnessed to improve mycobacteria killing at the site of infection.


Subject(s)
Cell Wall , Lung/immunology , Tuberculosis Vaccines , Tuberculosis, Pulmonary , Animals , Cell Wall/genetics , Cell Wall/immunology , Cytokines/immunology , Dendritic Cells/immunology , Escherichia coli/genetics , Escherichia coli/immunology , Lipopolysaccharides/immunology , Mice , T-Lymphocytes/immunology , Toll-Like Receptor 4/immunology , Tuberculosis Vaccines/genetics , Tuberculosis Vaccines/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...