Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(21): 8332-8339, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37198732

ABSTRACT

Poly(dimethylsiloxane) (PDMS) is used in microfluidics owing to its biocompatibility and simple fabrication. However, its intrinsic hydrophobicity and biofouling inhibit its microfluidic applications. Conformal hydrogel-skin coating for PDMS microchannels, involving the microstamping transfer of the masking layer, is reported herein. A selective uniform hydrogel layer with a thickness of ∼1 µm was coated in diverse PDMS microchannels with a resolution of ∼3 µm, maintaining its structure and hydrophilicity after 180 days (6 months). The wettability transition of PDMS was demonstrated through the switched emulsification in a flow-focusing device (water-in-oil [pristine PDMS] to oil-in-water [hydrophilic PDMS]). A one-step bead-based immunoassay was performed to detect the anti-severe acute respiratory syndrome coronavirus 2 IgG using a hydrogel-skin-coated point-of-care platform.


Subject(s)
COVID-19 , Microfluidics , Humans , Hydrogels , Dimethylpolysiloxanes/chemistry , Wettability , Water
2.
Front Neurol ; 13: 964354, 2022.
Article in English | MEDLINE | ID: mdl-36090887

ABSTRACT

Objective: To date, no vascular model to analyze frictional forces between stent retriever devices and vessel walls has been designed to be similar to the real human vasculature. We developed a novel in vitro intracranial cerebrovascular model and analyzed frictional forces of three stent retriever devices. Methods: A vascular mold was created based on digital subtraction angiography of a patient's cerebral vessels. The vascular model was constructed using polydimethylsiloxane (PDMS, Dow Corning, Inc.) as a silicone elastomer. The vascular model was coated on its inner surface with a lubricating layer to create a low coefficient of friction (~0.037) to closely approximate the intima. A pulsatile blood pump was used to produce blood flow inside the model to approximate real vascular conditions. The frictional forces of Trevo XP, Solitaire 2, and Eric 4 were analyzed for initial and maximal friction retrieval forces using this vascular model. The total pulling energy generated during the 3 cm movement was also obtained. Results: Results for initial retrieval force were as follows: Trevo, 0.09 ± 0.04 N; Solitaire, 0.25 ± 0.07 N; and Eric, 0.33 ± 0.21 N. Results for maximal retrieval force were as follows: Trevo, 0.36 ± 0.07 N; Solitaire, 0.54 ± 0.06 N; and Eric, 0.80 ± 0.13 N. Total pulling energy (N·cm) was 0.40 ± 0.10 in Trevo, 0.65 ± 0.10 in Solitaire, and 0.87 ± 0.14 in Eric, respectively. Conclusions: Using a realistic vascular model, different stent retriever devices were shown to have statistically different frictional forces. Future studies using a realistic vascular model are warranted to assess SRT devices.

3.
Polymers (Basel) ; 14(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36145989

ABSTRACT

As an alternative to conventional 3D printing methods that require supports, a new 3D printing strategy that utilizes guided light in situ has been developed for fabricating freestanding overhanging structures without supports. Light intensity has been found to be a crucial factor in modifying the dimensions of structures printed using this method; however, the underlying mechanism has not been clearly identified. Therefore, the light-intensity-dependent changes in the structure dimensions were analyzed in this study to elucidate the associated mechanism. Essentially, the entire process of deposition was monitored by assessing the behavior of photocurable droplets prior to their collision with the structure using imaging analysis tools such as a high-speed camera and MATLAB®. With increasing light intensity, the instability of the ejected falling droplets increased, and the droplet directionality deteriorated. This increased the dispersion of the droplet midpoints, which caused the average midpoints of the deposited single layers to shift further away from the center of the structure. Consequently, the diameter of the structure formed by successive stacking of single layers increased, and the layer thickness per droplet decreased. These led to light-intensity-dependent differences in the diameter and height of structures that were created from the same number of droplets.

4.
Adv Mater ; 33(14): e2006759, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33543521

ABSTRACT

Embolization, which is a minimally invasive endovascular treatment, is a safe and effective procedure for treating vascular malformations (e.g., aneurysms). Hydrogel microfibers obtained via spatiotemporally controllable in situ photocrosslinking exhibit great potential for embolizing aneurysms. However, this process is challenging because of the absence of biocompatible and morphologically stable hydrogels and the difficulty in continuously spinning the microfibers via in situ photocrosslinking in extreme endovascular environments such as those involving a tortuous geometry and high absorbance. A double-crosslinked alginate-based hydrogel with tantalum nanopowder (DAT) that exploits the synergistic effect of covalent crosslinking by visible-light irradiation and ionic crosslinking using Ca2+ , which is present in the blood, is developed in this study. Furthermore, an effective strategy to design and produce an optical-fiber-integrated microfluidic device (OFI-MD) that can continuously spin hydrogel microfibers via in situ photocrosslinking in extreme endovascular environments is proposed. As an embolic material, DAT exhibits promising characteristics such as radiopacity, nondissociation, nonswelling, and constant mechanical strength in blood, in addition to excellent cyto- and hemo-compatibilities. Using OFI-MD to spin DAT microfibers continuously can help fill aneurysms safely, uniformly, and completely within the endovascular simulator without generating microscopic fragments, which demonstrates its potential as an effective embolization strategy.


Subject(s)
Alginates/chemistry , Embolization, Therapeutic/instrumentation , Lab-On-A-Chip Devices , Optical Fibers , Vascular Malformations/therapy , Hydrogels , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...