Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(32): 36148-36158, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32697565

ABSTRACT

A loose nanofiltration (NF) membrane with excellent dye rejection and high permeation of inorganic salt is required to fractionate dye/salt mixture in dye wastewater treatment. In this study, we fabricated the loose NF membrane by using the electrospray interfacial polymerization (EIP) method. It is a novel and facile interfacial polymerization method, which controls the thickness of the poly(piperazine-amide) (PPA) layer in nanometers (1 nm/min) and changes cross-linking degree of PPA layer and pore size by varying the electrospray time; consequently, water permeance and dye/salt rejection ratio can be handled. The fabricated EIP membrane with an optimized fabrication condition (M30, electrospray time was 30 min) possessed excellent pure water permeance (20.2 LMH/bar), high dye rejection (e.g., 99.6% for congo red (CR)), and low salt rejection (e.g., 6.3% for NaCl). Moreover, the EIP membrane exhibited enhanced antifouling property than commercial NF membrane (NF90) with a high flux recovery rate (FRR) of 87.1% and low irreversible fouling (Rir) of 12.9% after fouled by bovine serum albumin (BSA) due to its great smooth surface (average roughness (Ra) is 12.2 nm), hydrophilicity property, enhanced zeta potential, and low protein adsorption. The results indicate that the EIP loose NF membrane had a high potential for dye wastewater treatment.

2.
Chemosphere ; 259: 127467, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32593811

ABSTRACT

Porous hollow fiber polysulfone (PSf) membranes were fabricated via a phase-inversion process and their performance during ultrafiltration (UF) was evaluated. The effects of the composition and concentration (0-50%) of different bore fluid mixtures, including N-methyl-2-pyrrolidone (NMP)/water, glycerol (G)/water, and ethylene glycol (EG)/water (in comparison with pure deionized water), on the structure, physicochemical properties, and performance of the fabricated membranes was investigated. Using these various bore fluid mixtures altered the thermodynamic and kinetic properties of the phase inversion system, and changed the morphology and structure of the fabricated membranes, especially on the lumen side. Increasing concentrations of NMP, G, and EG in the bore fluid resulted in increased pore size, porosity, and hydrophilicity. These bore fluid mixtures exhibited a strong influence on the perm-selectivity of the as-spun hollow fiber membranes. The membrane fabricated using 50% NMP/water as the bore fluid mixture exhibited the highest water flux of 166.98 LMH with a bovine serum albumin rejection rate of more than 97%. Overall, this study introduces an easy and effective way to control the structure of the membrane through bore fluid modification and shows how the inner skin layer properties can have a remarkable effect on water permeance, even in the out-in filtration test.


Subject(s)
Water Purification/methods , Glycerol , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Polymers , Porosity , Pyrrolidinones , Serum Albumin, Bovine , Sulfones , Ultrafiltration/methods , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...