Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 15: 1337595, 2024.
Article in English | MEDLINE | ID: mdl-38426003

ABSTRACT

Introduction: Attention-deficit/hyperactivity disorder (ADHD) affects a significant proportion of the pediatric population, making early detection crucial for effective intervention. Eye movements are controlled by brain regions associated with neuropsychological functions, such as selective attention, response inhibition, and working memory, and their deficits are related to the core characteristics of ADHD. Herein, we aimed to develop a screening model for ADHD using machine learning (ML) and eye-tracking features from tasks that reflect neuropsychological deficits in ADHD. Methods: Fifty-six children (mean age 8.38 ± 1.58, 45 males) diagnosed with ADHD based on the Diagnostic and Statistical Manual of Mental Disorders, fifth edition were recruited along with seventy-nine typically developing children (TDC) (mean age 8.80 ± 1.82, 33 males). Eye-tracking data were collected using a digital device during the performance of five behavioral tasks measuring selective attention, working memory, and response inhibition (pro-saccade task, anti-saccade task, memory-guided saccade task, change detection task, and Stroop task). ML was employed to select relevant eye-tracking features for ADHD, and to subsequently construct an optimal model classifying ADHD from TDC. Results: We identified 33 eye-tracking features in the five tasks with the potential to distinguish children with ADHD from TDC. Participants with ADHD showed increased saccade latency and degree, and shorter fixation time in eye-tracking tasks. A soft voting model integrating extra tree and random forest classifiers demonstrated high accuracy (76.3%) at identifying ADHD using eye-tracking features alone. A comparison of the model using only eye-tracking features with models using the Advanced Test of Attention or Stroop test showed no significant difference in the area under the curve (AUC) (p = 0.419 and p=0.235, respectively). Combining demographic, behavioral, and clinical data with eye-tracking features improved accuracy, but did not significantly alter the AUC (p=0.208). Discussion: Our study suggests that eye-tracking features hold promise as ADHD screening tools, even when obtained using a simple digital device. The current findings emphasize that eye-tracking features could be reliable indicators of impaired neurobiological functioning in individuals with ADHD. To enhance utility as a screening tool, future research should be conducted with a larger sample of participants with a more balanced gender ratio.

2.
JMIR Form Res ; 7: e45991, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37223978

ABSTRACT

BACKGROUND: Lack of quantifiable biomarkers is a major obstacle in diagnosing and treating depression. In adolescents, increasing suicidality during antidepressant treatment further complicates the problem. OBJECTIVE: We sought to evaluate digital biomarkers for the diagnosis and treatment response of depression in adolescents through a newly developed smartphone app. METHODS: We developed the Smart Healthcare System for Teens At Risk for Depression and Suicide app for Android-based smartphones. This app passively collected data reflecting the social and behavioral activities of adolescents, such as their smartphone usage time, physical movement distance, and the number of phone calls and text messages during the study period. Our study consisted of 24 adolescents (mean age 15.4 [SD 1.4] years, 17 girls) with major depressive disorder (MDD) diagnosed with Kiddie Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version and 10 healthy controls (mean age 13.8 [SD 0.6] years, 5 girls). After 1 week's baseline data collection, adolescents with MDD were treated with escitalopram in an 8-week, open-label trial. Participants were monitored for 5 weeks, including the baseline data collection period. Their psychiatric status was measured every week. Depression severity was measured using the Children's Depression Rating Scale-Revised and Clinical Global Impressions-Severity. The Columbia Suicide Severity Rating Scale was administered in order to assess suicide severity. We applied the deep learning approach for the analysis of the data. Deep neural network was employed for diagnosis classification, and neural network with weighted fuzzy membership functions was used for feature selection. RESULTS: We could predict the diagnosis of depression with training accuracy of 96.3% and 3-fold validation accuracy of 77%. Of the 24 adolescents with MDD, 10 responded to antidepressant treatments. We predicted the treatment response of adolescents with MDD with training accuracy of 94.2% and 3-fold validation accuracy of 76%. Adolescents with MDD tended to move longer distances and use smartphones for longer periods of time compared to controls. The deep learning analysis showed that smartphone usage time was the most important feature in distinguishing adolescents with MDD from controls. Prominent differences were not observed in the pattern of each feature between the treatment responders and nonresponders. The deep learning analysis revealed that the total length of calls received as the most important feature predicting antidepressant response in adolescents with MDD. CONCLUSIONS: Our smartphone app demonstrated preliminary evidence of predicting diagnosis and treatment response in depressed adolescents. This is the first study to predict the treatment response of adolescents with MDD by examining smartphone-based objective data with deep learning approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...