Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 16(6)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38542756

ABSTRACT

Obesity is a global health concern. Recent research has suggested that the development of anti-obesity ingredients and functional foods should focus on natural products without side effects. We examined the effectiveness and underlying mechanisms of Brassica juncea extract (BJE) in combating obesity via experiments conducted in both in vitro and in vivo obesity models. In in vitro experiments conducted in a controlled environment, the application of BJE demonstrated the ability to suppress the accumulation of lipids induced by MDI in 3T3-L1 adipocytes. Additionally, it downregulated adipogenic-related proteins peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), adipocyte protein 2 (aP2), and lipid synthesis-related protein acetyl-CoA carboxylase (ACC). It also upregulated the heat generation protein peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and fatty acid oxidation protein carnitine palmitoyltransferase-1 (CPT-1). The oral administration of BJE decreased body weight, alleviated liver damage, and inhibited the accumulation of lipids in mice with diet-induced obesity resulting from a high-fat diet. The inhibition of lipid accumulation by BJE in vivo was associated with a decreased expression of adipogenic and lipid synthesis proteins and an increased expression of heat generation and fatty acid oxidation proteins. BJE administration improved obesity by decreasing adipogenesis and activating heat generation and fatty acid oxidation in 3T3-L1 cells and in HFD-induced obese C57BL/6J mice. These results suggest that BJE shows potential as a natural method for preventing metabolic diseases associated with obesity.


Subject(s)
Anti-Obesity Agents , Mustard Plant , Mice , Animals , 3T3-L1 Cells , Mustard Plant/metabolism , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Mice, Obese , Anti-Obesity Agents/therapeutic use , Obesity/metabolism , Adipogenesis , Lipids/pharmacology , Fatty Acids/pharmacology , PPAR gamma/metabolism
2.
Food Sci Biotechnol ; 33(3): 539-556, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38274178

ABSTRACT

Sulforaphane (SFN) is an isothiocyanate commonly found in cruciferous vegetables. It is formed via the enzymatic hydrolysis of glucoraphanin by myrosinase. SFN exerts various biological effects, including anti-cancer, anti-oxidation, anti-obesity, and anti-inflammatory effects, and is widely used in functional foods and clinical medicine. However, the structure of SFN is unstable and easily degradable, and its production is easily affected by temperature, pH, and enzyme activity, which limit its application. Hence, several studies are investigating its physicochemical properties, stability, and biological activity to identify methods to increase its content. This article provides a comprehensive review of the plant sources, extraction and analysis techniques, in vitro and in vivo biological activities, and bioavailability of SFN. This article highlights the importance and provides a reference for the research and application of SFN in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...