Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38979601

ABSTRACT

Gold nanoparticle-loaded titania (Au/TiO2) inverse opals are highly ordered three-dimensional photonic structures with enhanced photocatalytic properties. However, fine control over the placement of the Au nanoparticles in the inverse opal structures remains challenging with traditional preparative methods. Here, we present a multi-component co-assembly strategy to prepare high-quality Au/TiO2 inverse opal films in which Au nanoparticles are either located on, or inside the TiO2 matrix, as verified using electron tomography. We report that Au nanoparticles embedded in the TiO2 support exhibit enhanced thermal and mechanical stability compared to non-embedded nanoparticles that are more prone to both leaching and sintering.

2.
ACS Nano ; 18(24): 15958-15969, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836504

ABSTRACT

Nanoparticle (NP) size and proximity are two physical descriptors applicable to practically all NP-supported catalysts. However, with conventional catalyst design, independent variation of these descriptors to investigate their individual effects on thermocatalysis remains challenging. Using a raspberry-colloid-templating approach, we synthesized a well-defined catalyst series comprising Pd12Au88 alloy NPs of three distinct sizes and at two different interparticle distances. We show that NP size and interparticle distance independently control activity and selectivity, respectively, in the hydrogenation of benzaldehyde to benzyl alcohol and toluene. Surface-sensitive spectroscopic analysis indicates that the surfaces of smaller NPs expose a greater fraction of reactive Pd dimers, compared to inactive Pd single atoms, thereby increasing intrinsic catalytic activity. Computational simulations reveal how a larger interparticle distance improves catalytic selectivity by diminishing the local benzyl alcohol concentration profile between NPs, thus suppressing its readsorption and consequently, undesired formation of toluene. Accordingly, benzyl alcohol yield is maximized using catalysts with smaller NPs separated by larger interparticle distances, overcoming activity-selectivity trade-offs. This work exemplifies the high suitability of the modular raspberry-colloid-templating method as a model catalyst platform to isolate individual descriptors and establish clear structure-property relationships, thereby bridging the materials gap between surface science and technical catalysts.

3.
ACS Nano ; 14(11): 16140-16155, 2020 Nov 24.
Article in English | MEDLINE | ID: mdl-33186028

ABSTRACT

The development of highly efficient and durable earth-abundant hydrogen evolution reaction (HER) catalysts is crucial for the extensive implementation of the hydrogen economy. Members of the 2D MXenes family, particularly Mo2CTx, have recently been identified as promising HER catalysts. However, their inherent oxidative instability in air and aqueous electrolyte solutions is hindering their widespread use. Herein, we present a simple and scalable method to circumvent adventitious oxidation in Mo2CTx MXenes via in situ sulfidation to form a Mo2CTx/2H-MoS2 nanohybrid. The intimate epitaxial coupling at the Mo2CTx/2H-MoS2 nanohybrid interface afforded superior HER activities, requiring only 119 or 182 mV overpotential to yield -10 or -100 mA cm-2geom current densities, respectively. Density functional theory calculations reveal strongest interfacial adhesion was found within the nanohybrid structure as compared to the physisorbed nanohybrid, and the possibility to tune the HER overpotential through manipulating the extent of MXene sulfidation. Critically, the presence of 2H-MoS2 suppresses further oxidation of the MXene layer, enabling the nanohybrid to sustain industrially relevant current densities of over -450 mA cm-2geom with exceptional durability. Less than 30 mV overpotential degradation was observed after 10 continuous days of electrolysis at a fixed -10 mA cm-2geom current density or 100,000 successive cyclic voltammetry cycles. The exceptional HER durability of the Mo2CTx/2H-MoS2 nanohybrid presents a major step forward to realize practical implementation of MXenes as noble metal free catalysts for broad-based applications in water splitting and energy conversion.

4.
ACS Nano ; 14(9): 10834-10864, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32790329

ABSTRACT

Electro-, photo-, and photoelectrocatalysis play a critical role toward the realization of a sustainable energy economy. They facilitate numerous redox reactions in energy storage and conversion systems, enabling the production of chemical feedstock and clean fuels from abundant resources like water, carbon dioxide, and nitrogen. One major obstacle for their large-scale implementation is the scarcity of cost-effective, durable, and efficient catalysts. A family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has recently emerged as promising earth-abundant candidates for large-area catalytic energy storage and conversion due to their unique properties of hydrophilicity, high metallic conductivity, and ease of production by solution processing. To take full advantage of these desirable properties, MXenes have been combined with other materials to form MXene hybrids with significantly enhanced catalytic performances beyond the sum of their individual components. MXene hybridization tunes the electronic structure toward optimal binding of redox active species to improve intrinsic activity while increasing the density and accessibility of active sites. This review outlines recent strategies in the design of MXene hybrids for industrially relevant electrocatalytic, photocatalytic, and photoelectrocatalytic applications such as water splitting, metal-air/sulfur batteries, carbon dioxide reduction, and nitrogen reduction. By clarifying the roles of individual material components in the MXene hybrids, we provide design strategies to synergistically couple MXenes with associated materials for highly efficient and durable catalytic applications. We conclude by highlighting key gaps in the current understanding of MXene hybrids to guide future MXene hybrid designs in catalytic energy storage and conversion applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...