Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(24): 40166-40178, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041323

ABSTRACT

Integrated microring resonators are well suited for wavelength-filtering applications in optical signal processing, and cascaded microring resonators allow flexible filter design in coupled-resonator optical waveguide (CROW) configurations. However, the implementation of high-order cascaded microring resonators with high extinction ratios (ERs) remains challenging owing to stringent fabrication requirements and the need for precise resonator tunability. We present a fully integrated on-chip second-order CROW filter using silicon photonic microelectromechanical systems (MEMS) to adjust tunable directional couplers and a phase shifter using nanoscale mechanical out-of-plane waveguide displacement. The filter can be fully reconfigured with regard to both the ER and center wavelength. We experimentally demonstrated an ER exceeding 25 dB and continuous wavelength tuning across the full free spectral range of 0.123 nm for single microring resonator, and showed reconfigurability in second-order CROW by tuning the ER and resonant wavelength. The tuning energy for an individual silicon photonic MEMS phase shifter or tunable coupler is less than 22 pJ with sub-microwatt static power consumption, which is far better than conventional integrated phase shifters based on other physical modulation mechanisms.

2.
Opt Lett ; 48(21): 5611-5614, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910715

ABSTRACT

We report on a scalable and programmable integrated Mach-Zehnder interferometer (MZI) with a tunable free spectral range (FSR) and extinction ratio (ER). For the tunable path of the MZI, we designed and utilized a tunable delay line having high flexibility based on silicon photonic microelectromechanical systems (MEMS). By utilizing MEMS, the length of the delay line can be geometrically modified. In this way, there is no optical loss penalty other than the waveguide propagation loss as the number of tunable steps increases. Therefore, our device is more scalable in terms of optical loss than the previous approaches based on cascaded MZIs. In addition, the tuning energy required to reconfigure the length is only 8.46 pJ.

SELECTION OF CITATIONS
SEARCH DETAIL
...