Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 30(2): 214-229.e18, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36758549

ABSTRACT

Glioblastoma (GBM) is an aggressive adult brain cancer with few treatment options due in part to the challenges of identifying brain-penetrant drugs. Here, we investigated the mechanism of MM0299, a tetracyclic dicarboximide with anti-glioblastoma activity. MM0299 inhibits lanosterol synthase (LSS) and diverts sterol flux away from cholesterol into a "shunt" pathway that culminates in 24(S),25-epoxycholesterol (EPC). EPC synthesis following MM0299 treatment is both necessary and sufficient to block the growth of mouse and human glioma stem-like cells by depleting cellular cholesterol. MM0299 exhibits superior selectivity for LSS over other sterol biosynthetic enzymes. Critical for its application in the brain, we report an MM0299 derivative that is orally bioavailable, brain-penetrant, and induces the production of EPC in orthotopic GBM tumors but not normal mouse brain. These studies have implications for the development of an LSS inhibitor to treat GBM or other neurologic indications.


Subject(s)
Glioblastoma , Glioma , Adult , Humans , Lanosterol/pharmacology , Lanosterol/metabolism , Brain/metabolism , Glioma/drug therapy , Glioma/metabolism , Cholesterol , Glioblastoma/drug therapy
2.
Cell Syst ; 11(5): 478-494.e9, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33113355

ABSTRACT

Targeted inhibition of oncogenic pathways can be highly effective in halting the rapid growth of tumors but often leads to the emergence of slowly dividing persister cells, which constitute a reservoir for the selection of drug-resistant clones. In BRAFV600E melanomas, RAF and MEK inhibitors efficiently block oncogenic signaling, but persister cells emerge. Here, we show that persister cells escape drug-induced cell-cycle arrest via brief, sporadic ERK pulses generated by transmembrane receptors and growth factors operating in an autocrine/paracrine manner. Quantitative proteomics and computational modeling show that ERK pulsing is enabled by rewiring of mitogen-activated protein kinase (MAPK) signaling: from an oncogenic BRAFV600E monomer-driven configuration that is drug sensitive to a receptor-driven configuration that involves Ras-GTP and RAF dimers and is highly resistant to RAF and MEK inhibitors. Altogether, this work shows that pulsatile MAPK activation by factors in the microenvironment generates a persistent population of melanoma cells that rewires MAPK signaling to sustain non-genetic drug resistance.


Subject(s)
MAP Kinase Signaling System/physiology , Melanoma/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/genetics , Melanoma/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mutation/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/physiology , Signal Transduction/drug effects , Tumor Microenvironment/drug effects , ras Proteins/genetics
3.
Elife ; 92020 01 21.
Article in English | MEDLINE | ID: mdl-31961323

ABSTRACT

Detecting relative rather than absolute changes in extracellular signals enables cells to make decisions in constantly fluctuating environments. It is currently not well understood how mammalian signaling networks store the memories of past stimuli and subsequently use them to compute relative signals, that is perform fold change detection. Using the growth factor-activated PI3K-Akt signaling pathway, we develop here computational and analytical models, and experimentally validate a novel non-transcriptional mechanism of relative sensing in mammalian cells. This mechanism relies on a new form of cellular memory, where cells effectively encode past stimulation levels in the abundance of cognate receptors on the cell surface. The surface receptor abundance is regulated by background signal-dependent receptor endocytosis and down-regulation. We show the robustness and specificity of relative sensing for two physiologically important ligands, epidermal growth factor (EGF) and hepatocyte growth factor (HGF), and across wide ranges of background stimuli. Our results suggest that similar mechanisms of cell memory and fold change detection may be important in diverse signaling cascades and multiple biological contexts.


Subject(s)
Cell Physiological Phenomena/physiology , Extracellular Space/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction/physiology , Cell Line , Cell Membrane/metabolism , Class I Phosphatidylinositol 3-Kinases/metabolism , Endocytosis/physiology , Epidermal Growth Factor/metabolism , Hepatocyte Growth Factor/metabolism , Humans , Models, Biological , Proto-Oncogene Proteins c-akt/metabolism
4.
Clin Cancer Res ; 19(12): 3189-200, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23620409

ABSTRACT

PURPOSE: Glioblastoma multiforme (GBM) is the most lethal form of brain cancer with a median survival of only 12 to 15 months. Current standard treatment consists of surgery followed by chemoradiation. The poor survival of patients with GBM is due to aggressive tumor invasiveness, an inability to remove all tumor tissue, and an innate tumor chemo- and radioresistance. Ataxia-telangiectasia mutated (ATM) is an excellent target for radiosensitizing GBM because of its critical role in regulating the DNA damage response and p53, among other cellular processes. As a first step toward this goal, we recently showed that the novel ATM kinase inhibitor KU-60019 reduced migration, invasion, and growth, and potently radiosensitized human glioma cells in vitro. EXPERIMENTAL DESIGN: Using orthotopic xenograft models of GBM, we now show that KU-60019 is also an effective radiosensitizer in vivo. Human glioma cells expressing reporter genes for monitoring tumor growth and dispersal were grown intracranially, and KU-60019 was administered intratumorally by convection-enhanced delivery or osmotic pump. RESULTS: Our results show that the combined effect of KU-60019 and radiation significantly increased survival of mice 2- to 3-fold over controls. Importantly, we show that glioma with mutant p53 is much more sensitive to KU-60019 radiosensitization than genetically matched wild-type glioma. CONCLUSIONS: Taken together, our results suggest that an ATM kinase inhibitor may be an effective radiosensitizer and adjuvant therapy for patients with mutant p53 brain cancers.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , Brain Neoplasms/therapy , Glioma/therapy , Morpholines/administration & dosage , Thioxanthenes/administration & dosage , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Brain Neoplasms/pathology , Cell Line, Tumor , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Glioma/pathology , Humans , Mice , Mutation , Radiation Tolerance/drug effects , Radiation, Ionizing , Tumor Suppressor Protein p53/genetics
5.
BMB Rep ; 44(3): 158-64, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21429292

ABSTRACT

Gliomas are the most frequently occurring primary malignancies in the central nervous system, and glioblastoma multiforme (GBM) is the most common and most aggressive of these tumors. Despite vigorous basic and clinical studies over past decades, the median survival of patients with this disease remains at about one year. Recent studies have suggested that GBMs contain a subpopulation of tumor cells that displays stem cell characteristics and could therefore be responsible for in vivo tumor growth. We will summarize the major oncogenic pathways abnormally regulated in gliomas, and review the recent findings from mouse models that our laboratory as well as others have developed for the study of GBM. The concept of cancer stem cells in GBM and their potential therapeutic importance will also be discussed.


Subject(s)
Brain Neoplasms , Disease Models, Animal , Glioblastoma , Animals , Brain Neoplasms/pathology , Brain Neoplasms/physiopathology , Brain Neoplasms/therapy , Gene Expression Regulation, Neoplastic , Glioblastoma/pathology , Glioblastoma/physiopathology , Glioblastoma/therapy , Humans , Mice , Neoplastic Stem Cells/physiology , Stem Cells/physiology
6.
Oncogene ; 24(24): 3864-74, 2005 Jun 02.
Article in English | MEDLINE | ID: mdl-15750622

ABSTRACT

Transforming growth factor beta (TGF-beta) stimulation results in the assembly of Smad-containing protein complexes that mediate activation or repression of TGF-beta responsive genes. To determine if disruption of specific Smad protein-protein interactions would selectively inhibit responses to TGF-beta or generally interfere with Smad-dependent signaling, we developed three Smad-binding peptide aptamers by introducing Smad interaction motifs from Smad-binding proteins CBP, FoxH1 and Lef1 into the scaffold protein E. coli thioredoxin A (Trx). All three classes of aptamers bound to Smads by GST pulldown assays and co-immunoprecipitation from mammalian cells. Expression of the aptamers in HepG2 cells did not generally inhibit Smad-dependent signaling as evaluated using seven TGF-beta responsive luciferase reporter genes. The Trx-xFoxH1b aptamer inhibited TGF-beta-induced expression from a reporter dependent on the Smad-FoxH1 interaction, A3-lux, by 50%. Trx-xFoxH1b also partially inhibited two reporters not dependent on a Smad-FoxH1 interaction, 3TP-lux and Twntop, and endogenous PAI-1 expression. Trx-Lef1 aptamer only inhibited expression of the Smad-Lef1 responsive reporter gene TwnTop. The Trx-CBP aptamer had no significant effect on reporter gene expression. The results suggest that Smad-binding peptide aptamers can be developed to selectively inhibit TGF-beta-induced gene expression.


Subject(s)
DNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Transforming Growth Factor beta/physiology , Amino Acid Sequence , Animals , Carcinoma, Hepatocellular , Carrier Proteins , Cell Line, Tumor , Corticosterone , DNA-Binding Proteins/genetics , Forkhead Transcription Factors , Gene Expression Regulation, Neoplastic , Genes, Reporter , Glutathione Transferase/genetics , Humans , Liver Neoplasms , Lymphoid Enhancer-Binding Factor 1 , Open Reading Frames , Polymerase Chain Reaction , Smad3 Protein , Trans-Activators/genetics , Transcription Factors , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...