Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(3): 4360-4370, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-34890196

ABSTRACT

A novel series of donor (D)-π-acceptor (A) merocyanine molecules harnessed with intramolecular chalcogen bonding (ChaB) is designed, synthesized, and characterized. ChaB comprises periodic chalcogen atoms, S, Se, and Te, and a neighboring oxygen atom of a carbonyl moiety. Compared to the D-π-A merocyanine dye with nontraditional intramolecular hydrogen bonding, the novel molecules with an intramolecular ChaB exhibit remarkably smaller absorption spectral widths and higher absorption coefficients attributed to their cyanine-like characteristics approaching the resonance parameter (c2) ∼0.5; furthermore, they exhibit better thermal stabilities and electrical charge-carrier transport properties in films. These novel D-π-A merocyanines harnessed with intramolecular ChaB networks are successfully utilized in high-performance color-selective organic photon-to-current conversion optoelectronic devices with excellent thermal stabilities. This study reports that the unique intramolecular ChaB plays an essential role in locking the molecular conformation of merocyanine molecules and enhancing the optical, thermal, and optoelectronic properties of high-performance and high-efficiency organic photon-to-current conversion devices.

2.
ACS Nano ; 15(1): 1217-1228, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33332092

ABSTRACT

A bulk-heterojunction (BHJ) structure of organic semiconductor blend is widely used in photon-to-electron converting devices such as organic photodetectors (OPD) and photovoltaics (OPV). However, the impact of the molecular structure on the interfacial electronic states and optoelectronic properties of the constituent organic semiconductors is still unclear, limiting further development of these devices for commercialization. Herein, the critical role of donor molecular structure on OPD performance is identified in highly intermixed BHJ blends containing a small-molecule donor and C60 acceptor. Blending introduces a twisted structure in the donor molecule and a strong coupling between donor and acceptor molecules. This results in ultrafast exciton separation (<1 ps), producing bound (binding energy ∼135 meV), localized (∼0.9 nm), and highly emissive interfacial charge transfer (CT) states. These interfacial CT states undergo efficient dissociation under an applied electric field, leading to highly efficient OPDs in reverse bias but poor OPVs. Further structural twisting and molecular-scale aggregation of the donor molecules occur in blends upon thermal annealing just above the transition temperature of 150 °C at which donor molecules start to reorganize themselves without any apparent macroscopic phase-segregation. These subtle structural changes lead to significant improvements in charge transport and OPD performance, yielding ultralow dark currents (∼10-10 A cm-2), 2-fold faster charge extraction (in µs), and nearly an order of magnitude increase in effective carrier mobility. Our results provide molecular insights into high-performance OPDs by identifying the role of subtle molecular structural changes on device performance and highlight key differences in the design of BHJ blends for OPD and OPV devices.

3.
Opt Express ; 27(18): 25410-25419, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31510413

ABSTRACT

In this work, organic photodiodes (OPDs) based on two newly synthesized p-type dipolar small molecules are reported for application to green-light-selective OPDs. In order to reduce the blue-color absorption induced by the use of C60 as the n-type material in a bulk heterojunction (BHJ), the electron donor:electron acceptor composition ratio is tuned in the BHJ. With this light manipulation approach, the blue-wavelength external quantum efficiency (EQE) is minimized to 18% after reducing the C60 concentration in the center part of the BHJ. The two p-type molecules get a cyanine-like character with intense and sharp absorption in the green color by adjusting the strength of their donating and accepting parts and by choosing a selenophene unit as a π-linker. When combined to C60, the green-wavelength EQE reaches 70% in a complete device composed of two transparent electrodes. Finally, the optical simulation shows the good color-balance performance of hybrid full-color image sensor without an additional filter by using the developed green OPD as the top-layer in stacked device architecture.

4.
ACS Appl Mater Interfaces ; 8(39): 26143-26151, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27618933

ABSTRACT

There are growing opportunities and demands for image sensors that produce higher-resolution images, even in low-light conditions. Increasing the light input areas through 3D architecture within the same pixel size can be an effective solution to address this issue. Organic photodiodes (OPDs) that possess wavelength selectivity can allow for advancements in this regard. Here, we report on novel push-pull D-π-A dyes specially designed for Gaussian-shaped, narrow-band absorption and the high photoelectric conversion. These p-type organic dyes work both as a color filter and as a source of photocurrents with linear and fast light responses, high sensitivity, and excellent stability, when combined with C60 to form bulk heterojunctions (BHJs). The effectiveness of the OPD composed of the active color filter was demonstrated by obtaining a full-color image using a camera that contained an organic/Si hybrid complementary metal-oxide-semiconductor (CMOS) color image sensor.

5.
Sci Rep ; 5: 7708, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25578322

ABSTRACT

Complementary metal-oxide-semiconductor (CMOS) colour image sensors are representative examples of light-detection devices. To achieve extremely high resolutions, the pixel sizes of the CMOS image sensors must be reduced to less than a micron, which in turn significantly limits the number of photons that can be captured by each pixel using silicon (Si)-based technology (i.e., this reduction in pixel size results in a loss of sensitivity). Here, we demonstrate a novel and efficient method of increasing the sensitivity and resolution of the CMOS image sensors by superposing an organic photodiode (OPD) onto a CMOS circuit with Si photodiodes, which consequently doubles the light-input surface area of each pixel. To realise this concept, we developed organic semiconductor materials with absorption properties selective to green light and successfully fabricated highly efficient green-light-sensitive OPDs without colour filters. We found that such a top light-receiving OPD, which is selective to specific green wavelengths, demonstrates great potential when combined with a newly designed Si-based CMOS circuit containing only blue and red colour filters. To demonstrate the effectiveness of this state-of-the-art hybrid colour image sensor, we acquired a real full-colour image using a camera that contained the organic-on-Si hybrid CMOS colour image sensor.

7.
J Am Chem Soc ; 128(45): 14542-7, 2006 Nov 15.
Article in English | MEDLINE | ID: mdl-17090038

ABSTRACT

Aiming at the high-contrast photochromic switching of fluorescence emission and its perfect nondestructive readout, a polymer film highly loaded with a specific photochromic compound, 1,2-bis(2'-methyl-5'-phenyl-3'-thienyl)perfluorocyclopentene (BP-BTE), and an excited-state intramolecular proton-transfer (ESIPT)-active compound, 2,5-bis(5'-tert-butyl-benzooxazol-2'-yl)hydroquinone (DHBO), was employed in this work. The special class of photochrome, BP-BTE, has negligible absorbance at 415 nm both in the open form and in the 365 nm photostationary state (PSS), and the ESIPT fluorophore, DHBO, emits large Stokes' shifted (175 nm; lambda(max)(abs) = 415 nm, lambda(max)(em) = 590 nm) and enhanced fluorescence (Phi(F)(powder) = 10%, Phi(F)(soln) = 2%). Bistability, high-contrast switching (on/off fluorescence switching ratio >290), nondestructive readout (over 125000 shots), and erasability were all together accomplished in this novel recording medium.

SELECTION OF CITATIONS
SEARCH DETAIL
...