Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38392726

ABSTRACT

The binary metal oxide mesoporous interfacial layers (bi-MO meso IF layer) templated by a graft copolymer are synthesized between a fluorine-doped tin oxide (FTO) substrate and nanocrystalline TiO2 (nc-TiO2). Amphiphilic graft copolymers, Poly(epichlorohydrin)-graft-poly(styrene), PECH-g-PS, were used as a structure-directing agent, and the fabricated bi-MO meso IF layer exhibits good interconnectivity and high porosity. Even if the amount of ZnO in bi-MO meso IF layer increased, it was confirmed that the morphology and porosity of the bi-MO meso IF layer were well-maintained. In addtion, the bi-MO meso IF layer coated onto FTO substrates shows higher transmittance compared with a pristine FTO substrate and dense-TiO2/FTO, due to the reduced surface roughness of FTO. The overall conversion efficiency (η) of solid-state photovoltaic cells, dye-sensitized solar cells (DSSCs) fabricated with nc-TiO2 layer/bi-MO meso IF layer TZ1 used as a photoanode, reaches 5.0% at 100 mW cm-2, which is higher than that of DSSCs with an nc-TiO2 layer/dense-TiO2 layer (4.2%), resulting from enhanced light harvesting, good interconnectivity, and reduced interfacial resistance. The cell efficiency of the device did not change after 15 days, indicating that the bi-MO meso IF layer with solid-state electrolyte has improved electrode/electrolyte interface and electrochemical stability. Additionally, commercial scattering layer/nc-TiO2 layer/bi-MO meso IF layer TZ1 photoanode-fabricated solid-state photovoltaic cells (DSSCs) achieved an overall conversion efficiency (η) of 6.4% at 100 mW cm-2.

2.
Nanomaterials (Basel) ; 11(4)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916761

ABSTRACT

One-dimensional (1D) titanium dioxide (TiO2) is prepared by hydrothermal method and incorporated as nanofiller into a hybrid polymer matrix of polyethylene glycol (PEG) and employed as a solid-electrolyte in dye-sensitized solar cells (DSSCs). Mesoporous carbon electrocatalyst with a high surface area is obtained by the carbonization of the PVDC-g-POEM double comb copolymer. The 1D TiO2 nanofiller is found to increase the photoelectrochemical performance. As a result, for the mesoporous carbon-based DSSCs, 1D TiO2 hybrid solid-state electrolyte yielded the highest efficiencies, with 6.1% under 1 sun illumination, in comparison with the efficiencies of 3.9% for quasi solid-state electrolyte and 4.8% for commercial TiO2 hybrid solid-state electrolyte, respectively. The excellent photovoltaic performance is attributed to the improved ion diffusion, scattering effect, effective path for redox couple transfer, and sufficient penetration of 1D TiO2 hybrid solid-state electrolyte into the electrode, which results in improved light-harvesting, enhanced electron transport, decreased charge recombination, and decreased resistance at the electrode/electrolyte interface.

3.
Nanomaterials (Basel) ; 9(10)2019 Oct 04.
Article in English | MEDLINE | ID: mdl-31590296

ABSTRACT

We prepare dye-sensitized solar cells (DSSCs) fabricated with a poly (ethylene glycol) based polymer gel electrolytes (PGEs) incorporating surface carbon shell-functionalized ZrO2 nanoparticles (ZrO2-C) as nanofillers (NFs). ZrO2 are polymerized via atom transfer radical polymerization (ATRP) using poly (ethylene glycol) methyl ether methacrylate (POEM) as a scaffold to prepare the ZrO2-C through carbonization. The power conversion efficiency of DSSC with 12 wt% ZrO2-C/PGEs is 5.6%, exceeding that with PGEs (4.4%). The enhanced efficiency is attributed to Lewis acid-base interactions of ZrO2-C and poly (ethylene glycol), catalytic effect of the carbon shells of ZrO2-C, which results in reduced crystallinity, enhanced ion conductivity of electrolytes, decreased counterelectrode/electrolyte interfacial resistance, and improved charge transfer rate. These results demonstrate that ZrO2-C introduction to PGEs effectively improves the performance of DSSCs.

4.
Chem Commun (Camb) ; 55(74): 11013-11016, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31475270

ABSTRACT

Synthesis of Ag2O decorated hierarchical TiO2 was realised in this study by employing a facile hydrothermal method, which involved the use of a double comb copolymer templated sol-gel and a chemical bath. The synthesized Ag2O@HNR demonstrated a photocurrent density of 1.78 mA cm-2 at 1.23 V against RHE under an illumination of 1 sun. This observed value of photocurrent density exceeded that of TiO2 nanorods by 2.18 times.

SELECTION OF CITATIONS
SEARCH DETAIL
...