Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 82(15): 2885-2899.e8, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35841888

ABSTRACT

Translated small open reading frames (smORFs) can have important regulatory roles and encode microproteins, yet their genome-wide identification has been challenging. We determined the ribosome locations across six primary human cell types and five tissues and detected 7,767 smORFs with translational profiles matching those of known proteins. The human genome was found to contain highly cell-type- and tissue-specific smORFs and a subset that encodes highly conserved amino acid sequences. Changes in the translational efficiency of upstream-encoded smORFs (uORFs) and the corresponding main ORFs predominantly occur in the same direction. Integration with 456 mass-spectrometry datasets confirms the presence of 603 small peptides at the protein level in humans and provides insights into the subcellular localization of these small proteins. This study provides a comprehensive atlas of high-confidence translated smORFs derived from primary human cells and tissues in order to provide a more complete understanding of the translated human genome.


Subject(s)
Gene Expression Regulation , Ribosomes , Genome, Human/genetics , Humans , Open Reading Frames/genetics , Protein Biosynthesis , Proteins/metabolism , RNA/metabolism , Ribosomes/genetics , Ribosomes/metabolism
2.
J Cardiovasc Magn Reson ; 22(1): 10, 2020 02 03.
Article in English | MEDLINE | ID: mdl-32008575

ABSTRACT

OBJECTIVES: The imaging features of dilated cardiomyopathy (DCM) overlap with physiological exercise-induced cardiac remodeling in active and otherwise healthy individuals. Distinguishing the two conditions is challenging. This study examined the diagnostic and prognostic roles of exercise stress imaging in asymptomatic patients with suspected DCM. METHODS: Exercise stress cardiovascular magnetic resonance (CMR) was performed in 60 asymptomatic patients with suspected DCM (dilated left ventricle and/or impaired systolic function on CMR), who also underwent DNA sequencing for DCM-causing genetic variants. Confirmed DCM was defined as genotype- and phenotype-positive (G+P+). Another 100 healthy subjects were recruited to establish normal exercise capacities (peak exercise cardiac index; PeakCI). The primary outcome was a composite of all-cause mortality, cardiac decompensation and ventricular arrhythmic events. RESULTS: No patients with confirmed G+P+ DCM had PeakCI exceeding the 35th percentile specific for age and sex. Applying this threshold in G-P+ patients, those with PeakCI below 35th percentile had characteristics similar to confirmed DCM while patients with higher PeakCI were younger, more active and higher longitudinal strain. Adverse cardiovascular events occurred only in patients with low exercise capacity (P = 0.004). CONCLUSIONS: In individuals with suspected DCM, exercise stress CMR demonstrates diagnostic and prognostic potential in distinguishing between pathological DCM and physiological exercise-induced cardiac remodeling.


Subject(s)
Cardiomegaly, Exercise-Induced , Cardiomyopathy, Dilated/diagnostic imaging , Exercise Test , Magnetic Resonance Imaging, Cine , Adult , Asymptomatic Diseases , Cardiomyopathy, Dilated/mortality , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Dilated/physiopathology , Cause of Death , Diagnosis, Differential , Disease Progression , Exercise Tolerance , Female , Humans , Male , Middle Aged , Myocardium/pathology , Predictive Value of Tests , Prognosis , Prospective Studies , Stroke Volume , Ventricular Function, Left , Young Adult
3.
Nature ; 552(7683): 110-115, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29160304

ABSTRACT

Fibrosis is a common pathology in cardiovascular disease. In the heart, fibrosis causes mechanical and electrical dysfunction and in the kidney, it predicts the onset of renal failure. Transforming growth factor ß1 (TGFß1) is the principal pro-fibrotic factor, but its inhibition is associated with side effects due to its pleiotropic roles. We hypothesized that downstream effectors of TGFß1 in fibroblasts could be attractive therapeutic targets and lack upstream toxicity. Here we show, using integrated imaging-genomics analyses of primary human fibroblasts, that upregulation of interleukin-11 (IL-11) is the dominant transcriptional response to TGFß1 exposure and required for its pro-fibrotic effect. IL-11 and its receptor (IL11RA) are expressed specifically in fibroblasts, in which they drive non-canonical, ERK-dependent autocrine signalling that is required for fibrogenic protein synthesis. In mice, fibroblast-specific Il11 transgene expression or Il-11 injection causes heart and kidney fibrosis and organ failure, whereas genetic deletion of Il11ra1 protects against disease. Therefore, inhibition of IL-11 prevents fibroblast activation across organs and species in response to a range of important pro-fibrotic stimuli. These results reveal a central role of IL-11 in fibrosis and we propose that inhibition of IL-11 is a potential therapeutic strategy to treat fibrotic diseases.


Subject(s)
Cardiovascular System/metabolism , Cardiovascular System/pathology , Fibrosis/metabolism , Fibrosis/pathology , Interleukin-11/metabolism , Animals , Autocrine Communication , Cells, Cultured , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis/chemically induced , Heart , Humans , Interleukin-11/antagonists & inhibitors , Interleukin-11/genetics , Interleukin-11 Receptor alpha Subunit/deficiency , Interleukin-11 Receptor alpha Subunit/genetics , Kidney/pathology , Male , Mice , Mice, Knockout , Middle Aged , Myocardium/metabolism , Myocardium/pathology , Organ Dysfunction Scores , Protein Biosynthesis , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/pharmacology , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...