Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nano Lett ; 21(12): 4903-4910, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34100617

ABSTRACT

Persistent luminescence nanoparticles (PLNPs) are an emerging photonic nanomaterial that possesses uniquely persistent luminescence properties after excitation ceases. They can be repeatedly recharged in vitro and in vivo and hold great promise for numerous areas and applications. Unfortunately, none of the existing synthesis methods can control their composition to grow core-shell structured PLNPs with desirable shapes and enhanced functionalities. Here, we report on straightforward thermolysis-mediated colloidal synthesis of CaF2:Dy@NaYF4 core-shell PLNPs that can enhance persistent luminescence under both light and X-ray excitations. Benefitting from the well-matched crystal lattices between CaF2 and NaYF4, this colloidal synthesis makes it possible to prepare core-shell PLNPs with exquisite control of the compositions, shapes, and enhanced luminescence. This demonstration of the developing colloidal core-shell PLNPs overcomes the current key bottleneck regarding the synthesis of heterostructured PLNPs and sets the stage for fully exploiting the potential of these fascinating luminous materials.


Subject(s)
Nanoparticles , Nanostructures , Luminescence
2.
Nanoscale ; 12(19): 10592-10599, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32373869

ABSTRACT

Single particle imaging of upconversion nanoparticles (UCNPs) has typically been realized using hexagonal (ß) phase lanthanide-doped sodium yttrium fluoride (NaYF4) materials, the upconversion luminescence (UCL) of which saturates at power densities (P) of several hundred W cm-2 under 980 nm near-infrared (NIR) excitation. Cubic (α) phase UCNPs have been mostly neglected because of their commonly observed lower UCL efficiency at comparable P in ensemble level studies. Here, we describe a set of sub-15 nm ytterbium-enriched α-NaYbF4:Er3+@CaF2 core/shell UCNPs doped with varying Er3+ concentrations (5-25%), studied over a wide P range of ∼8-105 W cm-2, which emit intense UCL even at a low P of 10 W cm-2 and also saturate at relatively low P. The highest upconversion quantum yield (ΦUC) and the highest particle brightness were obtained for an Er3+ dopant concentration of 12%, reaching the highest ΦUC of 0.77% at a saturation power density (Psat) of 110 W cm-2. These 12%Er3+-doped core/shell UCNPs were also the brightest UCNPs among this series under microscopic conditions at high P of ∼102-105 W cm-2 as demonstrated by imaging studies at the single particle level. Our results underline the potential applicability of the described sub-15 nm cubic-phase core/shell UCNPs for ensemble- and single particle-level bioimaging.

3.
Front Chem ; 6: 416, 2018.
Article in English | MEDLINE | ID: mdl-30320058

ABSTRACT

Upconversion Nanoparticles (UCNPs) enable direct measurement of the local temperature with high temporal and thermal resolution and sensitivity. Current studies focusing on small animals and cellular systems, based on continuous wave (CW) infrared excitation sources, typically lead to localized thermal heating. However, the effects of upconversion bioimaging at the molecular scale, where higher infrared intensities under a tightly focused excitation beam, coupled with pulsed excitation to provide higher peak powers, is not well understood. We report on the feasibility of 800 and 980 nm excited UCNPs in thermal sensing under pulsed excitation. The UCNPs report temperature ratiometrically with sensitivities in the 1 × 10-4 K-1 range under both excitation wavelengths. Our optical measurements show a ln(I525/I545) vs. 1/T dependence for both 800 nm and 980 nm excitations. Despite widespread evidence promoting the benefits of 800 nm over 980 nm CW excitation in avoiding thermal heating in biological imaging, in contrary, we find that given the pulsed laser intensities appropriate for single particle imaging, at both 800 and 980 nm, that there is no significant local heating in air and in water. Finally, in order to confirm the applicability of infrared imaging at excitation intensities compatible with single nanoparticle tracking, DNA tightropes were exposed to pulsed infrared excitations at 800 and 980 nm. Our results show no appreciable change in the viability of DNA over time when exposed to either wavelengths. Our studies provide evidence for the feasibility of exploring protein-DNA interactions at the single molecule scale, using UCNPs as a reporter.

4.
Sci Rep ; 8(1): 10036, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29968756

ABSTRACT

We report that long double-stranded DNA confined to quasi-1D nanochannels undergoes superdiffusive motion under the action of the enzyme T4 DNA ligase in the presence of necessary co-factors. Inside the confined environment of the nanochannel, double-stranded DNA molecules stretch out due to self-avoiding interactions. In absence of a catalytically active enzyme, we see classical diffusion of the center of mass. However, cooperative interactions of proteins with the DNA can lead to directed motion of DNA molecules inside the nanochannel. Here we show directed motion in this configuration for three different proteins (T4 DNA ligase, MutS, E. coli DNA ligase) in the presence of their energetic co-factors (ATP, NAD+).


Subject(s)
DNA Ligases/metabolism , DNA/metabolism , Escherichia coli Proteins/metabolism , MutS DNA Mismatch-Binding Protein/metabolism , Adenosine Triphosphate/metabolism , DNA Ligases/physiology , DNA-Binding Proteins/genetics , Diffusion , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/physiology , Motion , MutS DNA Mismatch-Binding Protein/physiology , NAD/metabolism
5.
Biophys J ; 114(11): 2498-2506, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29874601

ABSTRACT

We show that DNA carrying 5-methylcytosine modifications or methylated DNA (m-DNA) can be distinguished from DNA with unmodified cytosine by Raman spectroscopy enhanced by both a bowtie nanoantenna and excitation resonance. In particular, m-DNA can be identified by a peak near 1000 cm-1 and changes in the Raman peaks in the 1200-1700 cm-1 band that are enhanced by the ring-absorption resonance. The identification is robust to the use of resonance Raman and nanoantenna excitation used to obtain significant signal improvement. The primary differences are three additional Raman peaks with methylation at 1014, 1239, and 1639 cm-1 and spectral intensity inversion at 1324 (C5=C6) and 1473 cm-1 (C4=N3) in m-DNA compared to that of DNA with unmodified cytosine. We attribute this to the proximity of the methyl group to the antenna, which brings the (C5=C6) mode closer to experiencing a stronger near-field enhancement. We also show distinct Raman spectral features attributed to the transition of DNA from a hydrated state, when dissolved, to a dried/denatured state. We observe a general broadening of the larger lines and a transfer of spectral weight from the ∼1470 cm-1 vibration to the two higher-energy lines of the dried m-DNA solution. We attribute the new spectral characteristics to DNA softening under high salt conditions and find that the m-DNA is still distinguishable via the ∼1000 cm-1 peak and distribution of the signal in the 1200-1700 cm-1 band. The nanoantenna gain exceeds 20,000, whereas the real signal ratio is much less because of a low average enhanced region occupancy even with these relatively high DNA concentrations. It is improved when fixed DNA in a salt crystal lies near the nanoantenna. The Raman resonance gain profile is consistent with A-term expectations, and the resonance is found at ∼259 nm excitation wavelength.


Subject(s)
DNA Methylation , Nanotechnology , Spectrum Analysis, Raman , 5-Methylcytosine/metabolism
6.
Nanotechnology ; 27(13): 135201, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26894616

ABSTRACT

We enhance the efficiency of upconverting nanoparticles by investigating the plasmonic coupling of 25 nm diameter NaYF4:Yb, Er nanoparticles with a gold-shell coating, and study the physical mechanism of enhancement by single-particle, time-resolved spectroscopy. A three-fold overall increase in emission intensity, and five-fold increase of green emission for these plasmonically enhanced particles have been achieved. Using a combination of structural and fluorescent imaging, we demonstrate that fluorescence enhancement is based on the photonic properties of single, isolated particles. Time-resolved spectroscopy shows that the increase in fluorescence is coincident with decreased rise time, which we attribute to an enhanced absorption of infrared light and energy transfer from Yb(3+) to Er(3+) atoms. Time-resolved spectroscopy also shows that fluorescence life-times are decreased to different extents for red and green emission. This indicates that the rate of photon emission is not suppressed, as would be expected for a metallic cavity, but rather enhanced because the metal shell acts as an optical antenna, with differing efficiency at different wavelengths.

7.
Mikrochim Acta ; 182(7): 1561-1565, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-27134313

ABSTRACT

Intercalating fluorescent probes are widely used to visualize DNA in studies on DNA-protein interactions. Some require the presence of adenosine triphosphate (ATP). We have investigated the mechanical properties of DNA stained with the fluorescent intercalating dyes YOYO-1 and YOYO-3 as a function of ATP concentrations (up to 2 mM) by stretching single molecules in nanofluidic channels with a channel cross-section as small as roughly 100×100 nm2. The presence of ATP reduces the length of the DNA by up to 11 %. On the other hand, negligible effects are found if DNA is visualized with the minor groove-binding probe 4',6-diamidino-2-phenylindole. The apparent drop in extension under nanoconfinement is attributed to an interaction of the dye and ATP, and the resulting expulsion of YOYO-1 from the double helix.

8.
Nanotechnology ; 26(2): 025101, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25517688

ABSTRACT

Upconversion of infrared light to visible light has important implications for bioimaging. However, the small absorption cross-section of rare earth dopants has limited the efficiency of these anti-Stokes nanomaterials. We present enhanced excitation absorption and single particle fluorescent emission of sodium yttrium fluoride, NaYF4: Yb, Er based upconverting nanoparticles coated with a gold nanoshell through surface plasmon resonance. The single gold-shell coated nanoparticles show enhanced absorption in the near infrared, enhanced total emission intensity, and increased green relative to red emission. We also show differences in enhancement between single and aggregated gold shell nanoparticles. The surface plasmon resonance of the gold-shell coated nanoparticle is shown to be dependent on the shell thickness. In contrast to other reported results, our single particle experimental observations are corroborated by finite element calculations that show where the green/red emission enhancement occurs, and what portion of the enhancement is due to electromagnetic effects. We find that the excitation enhancement and green/red emission ratio enhancement occurs at the corners and edges of the doped emissive core.

9.
Biomicrofluidics ; 7(6): 64105, 2013.
Article in English | MEDLINE | ID: mdl-24396539

ABSTRACT

We report the simultaneous mapping of multiple histone tail modifications on chromatin that has been confined to nanofluidic channels. In these channels, chromatin is elongated, and histone modification can be detected using fluorescently tagged monoclonal antibodies. Using reconstituted chromatin with three distinct histone sources and two histone tail modification probes (H3K4me3 and H3K9ac), we were able to distinguish chromatin from the different sources. Determined ratios of the two modifications were consistent with the bulk composition of histone mixtures. We determined that the major difficulty in transitioning the mapping method to site-specific profiling within single genomic molecules is the interference of naturally aggregating, off-the shelf antibodies with the internal structure of chromatin.

10.
J Appl Phys ; 111(2): 24701-247018, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22312183

ABSTRACT

We report an experimental investigation of the magnitude of length and density fluctuations in DNA that has been stretched in nanofluidic channels. We find that the experimental data can be described using a one-dimensional overdamped oscillator chain with nonzero equilibrium spring length and that a chain of discrete oscillators yields a better description than a continuous chain. We speculate that the scale of these discrete oscillators coincides with the scale at which the finite extensibility of the polymer manifests itself. We discuss how the measurement process influences the apparent measured dynamic properties, and outline requirements for the recovery of true physical quantities.

11.
Biomicrofluidics ; 5(3): 34106-341068, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21869910

ABSTRACT

We report the profiling of the 5-methyl cytosine distribution within single genomic-sized DNA molecules at a gene-relevant resolution. This method linearizes and stretches DNA molecules by confinement to channels with a dimension of about 250×200 nm(2). The methylation state is detected using fluorescently labeled methyl-CpG binding domain proteins (MBD), with high signal contrast and low background. DNA barcodes consisting of methylated and non-methylated segments are generated, with both short and long concatemers demonstrating spatially resolved MBD binding. The resolution of the technique is better than 10 kbp, and single-molecule read-lengths exceeding 140 kbp have been achieved.

12.
Appl Phys Lett ; 98(25): 253704, 2011 Jun 20.
Article in English | MEDLINE | ID: mdl-21772582

ABSTRACT

DNA confined to rigid nanotubes shows density fluctuations around its stretched equilibrium conformation. We report an experimental investigation of the length-scale dependent dynamics of these density fluctuations. We find that for highly elongated molecules a Rouse description is consistent with observations at sufficiently large length scales. We further find that for strongly fluctuating molecules, or short length scales, such Rouse modes cannot be detected due to strong mixing of fluctuation modes.

13.
Opt Express ; 18(3): 2309-16, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20174060

ABSTRACT

The effects of the nanocrystal size on the emission spectra and decay rates of upconverting hexagonal NaYF(4):Yb,Er nanocrystals are investigated. The influence of nanocrystal size is represented in terms of the surface area/volume ratio (SA/Vol). Our results show that a small nanocrystal size, or large SA/Vol ratio increases the decay rate, in particular, the green luminescence decay rate varies linearly with the SA/Vol ratio.

14.
Lab Chip ; 9(19): 2772-4, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19967112

ABSTRACT

We present a method for the stretching of chromatin molecules in nanofluidic channels width a cross-section of about 80 x 80 nm(2), and hundreds of microns long. The stretching of chromatin to about 12 basepairs/nm enables location-resolved optical investigation of the nucleic material with a resolution of up to 6 kbp. The stretching is based on the equilibrium elongation that polymers experience when they are introduced into nanofluidic channels that are narrower than the Flory coil corresponding to the whole chromatin molecule. We investigate whether the elongation of reconstituted chromatin can be described by the de Gennes model. We compare nanofluidic stretching of bare DNA and chromatin of equal genomic length, and find that chromatin is 2.5 times more compact in its stretched state.


Subject(s)
Chromatin/chemistry , Microfluidic Analytical Techniques/methods , Chromatin/genetics , DNA/chemistry , DNA/genetics
15.
Nanotechnology ; 20(40): 405701, 2009 Oct 07.
Article in English | MEDLINE | ID: mdl-19738303

ABSTRACT

Upconverting nanoparticles (UCNPs) when excited in the near-infrared (NIR) region display anti-Stokes emission whereby the emitted photon is higher in energy than the excitation energy. The material system achieves that by converting two or more infrared photons into visible photons. The use of the infrared confers benefits to bioimaging because of its deeper penetrating power in biological tissues and the lack of autofluorescence. We demonstrate here sub-10 nm, upconverting rare earth oxide UCNPs synthesized by a combustion method that can be stably suspended in water when amine modified. The amine modified UCNPs show specific surface immobilization onto patterned gold surfaces. Finally, the low toxicity of the UCNPs is verified by testing on the multi-cellular C. elegans nematode.


Subject(s)
Diagnostic Imaging/methods , Nanoparticles/chemistry , Nanotechnology/methods
16.
Proc Natl Acad Sci U S A ; 105(45): 17217-21, 2008 Nov 11.
Article in English | MEDLINE | ID: mdl-18981427

ABSTRACT

The Sackler Colloquium entitled "Nanomaterials in Biology and Medicine: Promises and Perils" was held on April 10-11, 2007. We have been able to assemble a representative sampling of 17 of the invited talks ranging over the topics presented. Any new technology carries with it both a promise of transforming the way we do things and the possibility that there are unforeseen consequences. The papers collected here represent a cross-section of these issues. As an example, we present our own work on nano-upconversion phosphors as an example of this new class of nanomaterials with potential use in medicine and biology.


Subject(s)
Medical Laboratory Science/trends , Nanostructures , Nanotechnology/trends , Asbestos/chemistry , Particle Size , Titanium/chemistry , X-Ray Diffraction
17.
Nano Lett ; 6(2): 169-74, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16464029

ABSTRACT

We show here that upconversion phosphors can be imaged both by infrared excitation and in a scanning electron microscope. We have synthesized and characterized for this work up-converting phosphor nanoparticles nonaggregated nanocrystals of size range 50-200 nm. We have investigated the optical properties of 50-200 nm nanoparticles and found a square dependence of the emitted visible fluorescence on the infrared excitation and verified that under electron excitation similar narrow band emission spectra can be obtained as is seen with IR upconversion. The viability of the nanoparticles for biological imaging was confirmed by imaging the digestive system of the nematode worm Caenorhabditis elegans, and we have confirmed using energy-dispersive X-ray analysis that the up-conversion nanoparticles can be identified in a scanning electron microscope at high spatial resolution.


Subject(s)
Caenorhabditis elegans/chemistry , Nanostructures/chemistry , Phosphorus/chemistry , Animals , Microscopy, Electron, Scanning/methods , Particle Size , Sensitivity and Specificity , Spectrometry, X-Ray Emission/methods , Surface Properties
18.
Proc Natl Acad Sci U S A ; 102(29): 10012-6, 2005 Jul 19.
Article in English | MEDLINE | ID: mdl-16000405

ABSTRACT

We have performed restriction mapping of DNA molecules using restriction endonucleases in nanochannels with diameters of 100-200 nm. The location of the restriction reaction within the device is controlled by electrophoresis and diffusion of Mg2+ and EDTA. We have successfully used the restriction enzymes SmaI, SacI, and PacI, and have been able to measure the positions of restriction sites with a precision of approximately 1.5 kbp in 1 min using single DNA molecules.


Subject(s)
DNA Restriction Enzymes/metabolism , DNA/metabolism , Nanotechnology/methods , Restriction Mapping/methods , Magnesium , Microscopy , Nanostructures
SELECTION OF CITATIONS
SEARCH DETAIL
...