Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 9(5): 2722-2732, 2021 May.
Article in English | MEDLINE | ID: mdl-34026085

ABSTRACT

The lemongrass plant, which is widely cultivated in Asia, Australia, and Africa, has been reported to have many significant health benefits such as antimicrobial, insecticide, anticancer, fight fever, and disinfection. Therefore, it is an added benefit to have lemongrass compounds in cooking oil. This study was aimed to compare the conventional (CSE), and ultrasound-assisted solvent extraction (UASE) for citral compounds from lemongrass (Cymbopogon) leaves and to optimize the best extraction method using the response surface methodology (RSM) and ANOVA. RSM design of experiments using three types of cooking oils; palm oil, sunflower oil, and corn oil. The effect of three independent variables, which are temperature (48.2-81.8°C), extraction time (4.8-55.2 min), and solvent to leaves ratio (5.3-18.7), was investigated. The characterization of lemongrass-infused cooking oil was evaluated by Fourier transform infrared spectroscopy (FT-IR), Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM) analysis for confirmation of the citral compound extraction. This extraction process is optimized using Response Surface Methodology (RSM) for producing the lemongrass-infused cooking oil. After optimization, the UASE process gives 1.009 × 106 maximum citral area for palm oil and 1.767 × 106 maximum citral area for sunflower oil. CSE process only can give 2.025 × 105 and 2.179 × 105 citral area in the GC-MS spectrum for palm oil and sunflower oil respectively. For both the UASE and the CSE, the optimum operating conditions are 81.8°C of extraction temperature and 55.2 min of extraction time except for lemongrass-infused palm oil in the CSE process with 45 min extraction time. The optimum solvent to leaves ratio varies from 5.3:1 to 12.9:1. This study found that corn oil cannot be used as a solvent to extract lemongrass-infused cooking oil due to the insignificant changes and no citral peak. The lemongrass (Cymbopogon)-infused palm oil and sunflower oil extracted using the UASE have a higher maximum citral area than the CSE process.

2.
Environ Sci Pollut Res Int ; 22(13): 10144-58, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25854202

ABSTRACT

In the present study, the feasibility of soil used as a low-cost adsorbent for the removal of Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution was investigated. The kinetics for adsorption of the heavy metal ions from aqueous solution by soil was examined under batch mode. The influence of the contact time and initial concentration for the adsorption process at pH of 4.5, under a constant room temperature of 25 ± 1 °C were studied. The adsorption capacity of the three heavy metal ions from aqueous solution was decreased in order of Pb(2+) > Cu(2+) > Zn(2+). The soil was characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopic-energy dispersive X-ray (SEM-EDX), and Brunauer, Emmett, and Teller (BET) surface area analyzer. From the FTIR analysis, the experimental data was corresponded to the peak changes of the spectra obtained before and after adsorption process. Studies on SEM-EDX showed distinct adsorption of the heavy metal ions and the mineral composition in the study areas were determined to be silica (SiO2), alumina (Al2O3), and iron(III) oxide (FeO3). A distinct decrease of the specific surface area and total pore volumes of the soil after adsorption was found from the BET analysis. The experimental results obtained were analyzed using four adsorption kinetic models, namely pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion. Evaluating the linear correlation coefficients, the kinetic studies showed that pseudo-second-order equation described the data appropriable than others. It was concluded that soil can be used as an effective adsorbent for removing Cu(2+), Zn(2+), and Pb(2+) ions from aqueous solution.


Subject(s)
Soil/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Aluminum Oxide/chemistry , Copper/isolation & purification , Diffusion , Ferric Compounds/chemistry , Kinetics , Lead/isolation & purification , Silicon Dioxide/chemistry , Zinc/isolation & purification
3.
J Colloid Interface Sci ; 338(1): 22-9, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19643427

ABSTRACT

In this study, a zirconium-based magnetic sorbent is developed by a coprecipitation technology. The characterization of the sorbent and its adsorption behavior are systematically investigated. It is shown that the sorbent has a small mean diameter of 543.7 nm, a specific surface area of 151 m(2)/g, and a pH(zpc) of 7. The sorbent has a rough surface and many pores developed on the surface. It has a molecular formula of ZrO(OH)(2) x 1.6 Fe(3)O(4) x 2.5 H(2)O, which was determined by the thermal gravimetric analysis, the elemental analysis, and the digestion experiments. The sorption equilibrium can be reached within 25 h. Better adsorption can be obtained at lower pH, and the optimal initial pH is from 2.6 to 3.3. The maximum adsorption capacity of 45.6 mg-As/g is achieved, which is much higher than many reported sorbents. FTIR spectra analysis indicates that -OH groups play an important role in the uptake. Some of the arsenate are reduced to arsenite after its adsorption onto the magnetic sorbent; the divalent iron in the sorbent may provide electrons for the reduction. A conceptual model for the adsorption of arsenate by the magnetic sorbent is proposed to illustrate the mechanism.

4.
Langmuir ; 25(9): 4973-8, 2009 May 05.
Article in English | MEDLINE | ID: mdl-19323493

ABSTRACT

The adsorption of organic arsenate, monomethylarsonate (MMA), onto a calcium alginate encapsulated magnetic sorbent is studied in this paper. A novel alginate encalsulated magnetic sorbent was used in the experiments on adsorption isotherm, kinetics, and pH effect. It was found that the equilibrium sorption can be attained within 25 h. Solution pH plays a key role in the removal of MMA from the solution. A greater adsorption can be achieved at pH 4 and below. The maximum sorption capacity of MMA was 8.57 mg As/g, which is slightly higher than the reported adsorbents. The interaction characteristics between the organic arsenate and magnetic sorbent were elucidated by applying FT-IR and XPS analyses. It is shown that the -COOH and Fe-O groups in the sorbent are involved in the adsorption process. The appearance of As-CH(3) and alkane C-H groups in the FT-IR spectrum reveals the binding of the organic arsenate to the sorbent. The XPS analysis indicates that reduction of organic arsenate to organic arsenite on the sorbent's surface happens through solid state redox reaction via charge transport from Fe(II) and C-O species in the sorbent. The XPS results also show the disappearance of C-OH and formation of As-O. It is deduced from the spectral results that mechanisms of organic arsenate adsorption involve C-OH, As-O, and Fe-O groups with the solid state redox process.


Subject(s)
Arsenites/chemistry , Magnetics , Organic Chemicals/chemistry , Adsorption , Molecular Structure , Spectrum Analysis
5.
J Colloid Interface Sci ; 333(1): 33-9, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19223042

ABSTRACT

Arsenate removal by a calcium alginate-encapsulated magnetic sorbent was studied. The morphology, microstructure, and composition properties of the sorbent were explored using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The SEM study demonstrates that there are many protuberances and pores on the sorbent surface; the XRD analysis reveals that the sorbent consists of Fe(3)O(4). The EDX analysis indicates that the adsorption on the surfaces of sorbent is highly location dependent. The interaction characteristics between the arsenic and the functional groups on the sorbent were studied by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). These studies indicate that the lattice oxygen in magnetite and the oxygen in hydroxyl of the calcium alginate play important roles in the sorption of arsenate ions onto the sorbent. More importantly, the XPS analysis demonstrates that the arsenate is reduced to arsenite after its adsorption onto the sorbent. It is proposed that divalent iron and the alcoholic group in alginate provide electrons to arsenate. A conceptual model for the adsorption is proposed to illustrate the mechanisms.


Subject(s)
Alginates/chemistry , Arsenates/chemistry , Magnetics , Adsorption , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Microscopy, Electron, Scanning , Particle Size , Spectrophotometry , Spectroscopy, Fourier Transform Infrared , Surface Properties , X-Ray Diffraction , X-Rays
6.
Environ Sci Technol ; 42(7): 2551-6, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18504995

ABSTRACT

Copper adsorption onto calcium alginate encapsulated magnetic sorbent is studied in this paper. The objective of this study was to qualitatively and quantitatively elucidate the copper binding onto the sorbent. The adsorption increases from around 0 to almost 100% as the initial pH is increased from 2 to 5. A maximum adsorption capacity of 0.99 mmol g(-1) is achieved. The FT-IR and XPS studies show that the C-O in carboxyl group of alginate directly attaches to the copper ion that leads to most of the adsorption. A mathematical model is developed, and it includes ion exchange between the calcium and the copper, coordination reaction between the functional group and the copper, as well as surface complex formation between the iron oxide and the copper. The model is capable of describing and predicting effects of various key operational parameters on the adsorption process, such as initial pH, metal concentration, and dosage of sorbent.


Subject(s)
Alginates/chemistry , Copper/chemistry , Magnetics , Spectroscopy, Fourier Transform Infrared/methods , Spectrum Analysis/methods , Adsorption , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Models, Theoretical , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...