Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Tissue Eng Regen Med ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955905

ABSTRACT

BACKGROUND: This study aimed to identify glycine analogs conducive to the formation of cell-absorbable nanocomplexes, enhancing collagen synthesis and subsequent osteogenesis in combination with BMP2 for improved bone regeneration. METHODS: Glycine and its derivatives were assessed for their effects on osteogenic differentiation in MC3T3-E1 cells and human bone marrow mesenchymal stem cells (BMSCs) under osteogenic conditions or with BMP2. Osteogenic differentiation was assessed through alkaline phosphatase staining and real-time quantitative polymerase chain reaction (RT-qPCR). Nanocomplex formation was examined via scanning electron microscopy, circular dichroism, and ultraviolet-visible spectroscopy. In vivo osteogenic effects were validated using a mouse calvarial defect model, and bone regeneration was evaluated through micro-computed tomography and histomorphometric analysis. RESULTS: Glycine, glycine methyl ester, and glycinamide significantly enhanced collagen synthesis and ALP activity in conjunction with an osteogenic medium (OSM). GA emerged as the most effective inducer of osteoblast differentiation marker genes. Combining GA with BMP2 synergistically stimulated ALP activity and the expression of osteoblast markers in both cell lines. GA readily formed nanocomplexes, facilitating cellular uptake through strong electrostatic interactions. In an in vivo calvarial defect mouse model, the GA and BMP2 combination demonstrated enhanced bone volume, bone volume/tissue volume ratio, trabecular numbers, and mature bone formation compared to other combinations. CONCLUSION: GA and BMP2 synergistically promoted in vitro osteoblast differentiation and in vivo bone regeneration through nanocomplex formation. This combination holds therapeutic promise for individuals with bone defects, showcasing its potential for clinical intervention.

2.
ACS Pharmacol Transl Sci ; 7(4): 1023-1031, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38633588

ABSTRACT

The unique structure and beneficial biological properties of marine natural products have drawn interest in drug development. Here, we examined the therapeutic potential of napyradiomycin B4 isolated from marine-derived Streptomyces species for osteoclast-related skeletal diseases. Bone marrow-derived macrophages were treated with napyradiomycin B4 in an osteoclast-inducing medium, and osteoclast formation, osteoclast-specific gene expression, and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) localization were evaluated using tartrate-resistant acid phosphatase staining, real-time PCR, and immunostaining, respectively. Phosphorylation levels of signaling proteins were assessed by immunoblot analysis to understand the molecular action of napyradiomycin B4. The in vivo efficacy of napyradiomycin B4 was examined under experimental periodontitis, and alveolar bone destruction was evaluated by microcomputed tomography (micro-CT) and histological analyses. Among the eight napyradiomycin derivatives screened, napyradiomycin B4 considerably inhibited osteoclastogenesis. Napyradiomycin B4 significantly suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation and disrupted the expression of NFATc1 and its target genes. Mitogen-activated extracellular signal-regulated kinase (MEK) and extracellular signal-regulated kinase (ERK) phosphorylation levels were reduced by napyradiomycin B4 in response to RANKL. Under in vivo experimental periodontitis, napyradiomycin B4 significantly attenuated osteoclast formation and decreased the distance between the cementoenamel junction and alveolar bone crest. Our findings demonstrate the antiosteoclastogenic activity of napyradiomycin B4 by inhibiting the RANKL-induced MEK-ERK signaling pathway and its protective effect on alveolar bone destruction.

3.
Mol Med Rep ; 28(5)2023 11.
Article in English | MEDLINE | ID: mdl-37732549

ABSTRACT

Wear particle­induced osteolysis is a serious complication that occurs in individuals with titanium (Ti)­based implants following long­term usage due to loosening of the implants. The control of excessive osteoclast differentiation and inflammation is essential for protecting against wear particle­induced osteolysis. The present study evaluated the effect of britanin, a pseudoguaianolide sesquiterpene isolated from Inula japonica, on osteoclastogenesis in vitro and Ti particle­induced osteolysis in vivo. The effect of britanin was examined in the osteoclastogenesis of mouse bone marrow­derived macrophages (BMMs) using TRAP staining, RT­PCR, western blotting and immunocytochemistry. The protective effect of britanin was examined in a mouse calvarial osteolysis model and evaluated using micro­CT and histomorphometry. Britanin inhibited osteoclast differentiation and F­actin ring formation in the presence of macrophage colony­stimulating factor and receptor activator of nuclear factor kB ligand in BMMs. The expression of osteoclast­specific marker genes, including tartrate­resistant acid phosphatase, cathepsin K, dendritic cell­specific transmembrane protein, matrix metallopeptidase 9 and nuclear factor of activated T­cells cytoplasmic 1, in the BMMs was significantly reduced by britanin. In addition, britanin reduced the expression of B lymphocyte­induced maturation protein­1, which is a transcriptional repressor of negative osteoclastogenesis regulators, including interferon regulatory factor­8 and B­cell lymphoma 6. Conversely, britanin increased the expression levels of anti­oxidative stress genes, namely nuclear factor erythroid­2­related factor 2, NAD(P)H quinone oxidoreductase 1 and heme oxygenase 1 in the BMMs. Furthermore, the administration of britanin significantly reduced osteolysis in a Ti particle­induced calvarial osteolysis mouse model. Based on these findings, it is suggested that britanin may be a potential therapeutic agent for wear particle­induced osteolysis and osteoclast­associated disease.


Subject(s)
Osteogenesis , Osteolysis , Humans , Animals , Mice , Osteolysis/drug therapy , Osteolysis/etiology , Titanium/adverse effects , Osteoclasts , Actin Cytoskeleton , Disease Models, Animal
4.
Anim Cells Syst (Seoul) ; 27(1): 1-9, 2023.
Article in English | MEDLINE | ID: mdl-36704446

ABSTRACT

Regulation of osteoclastogenesis and bone-resorbing activity can be an efficacious strategy for treating bone loss diseases because excessive osteoclastic bone resorption leads to the development of such diseases. Here, we investigated the role of (-)-tubaic acid, a thermal degradation product of rotenone, in osteoclast formation and function in an attempt to identify alternative natural compounds. (-)-Tubaic acid significantly inhibited receptor activator of nuclear factor-κB ligand (RANKL)-mediated osteoclast differentiation at both the early and late stages, suggesting that (-)-tubaic acid affects the commitment and differentiation of osteoclast progenitors as well as the cell-cell fusion of mononuclear osteoclasts. (-)-Tubaic acid attenuated the activation of extracellular signal-regulated kinase (ERK) and expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and its target genes in response to RANKL. Furthermore, a pit-formation assay revealed that (-)-tubaic acid significantly impaired the bone-resorbing activity of osteoclasts. Our results demonstrated that (-)-tubaic acid exhibits anti-osteoclastogenic and anti-resorptive effects, indicating its therapeutic potential in the management of osteoclast-related bone diseases.

5.
Int J Mol Sci ; 22(15)2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34361069

ABSTRACT

Postmenopausal osteoporosis is closely associated with excessive osteoclast formation and function, resulting in the loss of bone mass. Osteoclast-targeting agents have been developed to manage this disease. We examined the effects of ciclopirox on osteoclast differentiation and bone resorption in vitro and in vivo. Ciclopirox significantly inhibited osteoclast formation from primary murine bone marrow macrophages (BMMs) in response to receptor activator of nuclear factor kappa B ligand (RANKL), and the expression of genes associated with osteoclastogenesis and function was decreased. The formation of actin rings and resorption pits was suppressed by ciclopirox. Analysis of RANKL-mediated early signaling events in BMMs revealed that ciclopirox attenuates IκBα phosphorylation without affecting mitogen-activated protein kinase activation. Furthermore, the administration of ciclopirox suppressed osteoclast formation and bone loss in ovariectomy-induced osteoporosis in mice and reduced serum levels of osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus. These results indicate that ciclopirox exhibits antiosteoclastogenic activity both in vitro and in vivo and represents a new candidate compound for protection against osteoporosis and other osteoclast-related bone diseases.


Subject(s)
Antifungal Agents/pharmacology , Bone Resorption/drug therapy , Ciclopirox/pharmacology , Osteoclasts/cytology , Osteogenesis , Ovariectomy/adverse effects , Protective Agents/pharmacology , Animals , Bone Resorption/etiology , Bone Resorption/pathology , Cell Differentiation , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Osteoclasts/drug effects , RANK Ligand/genetics , RANK Ligand/metabolism
6.
Genet Test Mol Biomarkers ; 25(3): 199-210, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33734890

ABSTRACT

Background: The association between dysregulated microRNAs (miRNAs) and acute myeloid leukemia (AML) is well known. However, our understanding of the regulatory role of miRNAs in the cytogenetically normal AML (CN-AML) subtype pathway is still poor. The current study integrated miRNA and mRNA profiles to explore novel miRNA-mRNA interactions that affect the regulatory patterns of de novo CN-AML. Methods: We utilized a multiplexed nanoString nCounter platform to profile both miRNAs and mRNAs using similar sets of patient samples (n = 24). Correlations were assessed, and an miRNA-mRNA network was constructed. The underlying biological functions of the mRNAs were predicted by gene enrichment. Finally, the interacting pairs were assessed using TargetScan and microT-CDS. We identified 637 significant negative correlations (false discovery rate <0.05). Results: Network analysis revealed a cluster of 12 miRNAs representing the majority of mRNA targets. Within the cluster, five miRNAs (miR-495-3p, miR-185-5p, let-7i-5p, miR-409-3p, and miR-127-3p) were posited to play a pivotal role in the regulation of CN-AML, as they are associated with the negative regulation of myeloid leukocyte differentiation, negative regulation of myeloid cell differentiation, and positive regulation of hematopoiesis. Conclusion: Three novel interactions in CN-AML were predicted as let-7i-5p:HOXA9, miR-495-3p:PIK3R1, and miR-495-3p:CDK6 may be responsible for regulating myeloid cell differentiation in CN-AML.


Subject(s)
Leukemia, Myeloid, Acute/genetics , MicroRNAs/genetics , RNA, Messenger/genetics , Adult , Aged , Cytogenetic Analysis/methods , Female , Gene Expression Profiling/methods , Gene Regulatory Networks/genetics , Humans , Malaysia , Male , Middle Aged
7.
Int J Mol Sci ; 22(4)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33671948

ABSTRACT

Alveolar bone loss, the major feature of periodontitis, results from the activation of osteoclasts, which can consequently cause teeth to become loose and fall out; the development of drugs capable of suppressing excessive osteoclast differentiation and function is beneficial for periodontal disease patients. Given the difficulties associated with drug discovery, drug repurposing is an efficient approach for identifying alternative uses of commercially available compounds. Here, we examined the effects of PF-3845, a selective fatty acid amide hydrolase (FAAH) inhibitor, on receptor activator of nuclear factor kappa B ligand (RANKL)-mediated osteoclastogenesis, its function, and the therapeutic potential for the treatment of alveolar bone destruction in experimental periodontitis. PF-3845 significantly suppressed osteoclast differentiation and decreased the induction of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific markers. Actin ring formation and osteoclastic bone resorption were also reduced by PF-3845, and the anti-osteoclastogenic and anti-resorptive activities were mediated by the suppression of phosphorylation of rapidly accelerated fibrosarcoma (RAF), mitogen-activated protein kinase (MEK), extracellular signal-regulated kinase, (ERK) and nuclear factor κB (NF-κB) inhibitor (IκBα). Furthermore, the administration of PF-3845 decreased the number of osteoclasts and the amount of alveolar bone destruction caused by ligature placement in experimental periodontitis in vivo. The present study provides evidence that PF-3845 is able to suppress osteoclastogenesis and prevent alveolar bone loss, and may give new insights into its role as a treatment for osteoclast-related diseases.


Subject(s)
Alveolar Bone Loss/drug therapy , Amidohydrolases/antagonists & inhibitors , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Osteogenesis/drug effects , Periodontitis/drug therapy , Piperidines/pharmacology , Piperidines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use , Animals , Bone Resorption/drug therapy , Cells, Cultured , Disease Models, Animal , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Osteoclasts/metabolism , RANK Ligand/metabolism , Treatment Outcome
8.
Tissue Eng Regen Med ; 18(2): 315-324, 2021 04.
Article in English | MEDLINE | ID: mdl-33145742

ABSTRACT

BACKGROUND: This study investigates the effects of a neuropeptide, secretoneurin (SN), on bone regeneration in an experimental mouse model. METHODS: The effects of SN on cell proliferation, osteoblast marker genes expression, and mineralization were evaluated using the CCK-8 assay, quantitative reverse transcriptase polymerase chain reaction (RT-PCR), and alizarin red S staining, respectively. To examine the effects of SN on bone regeneration in vivo, bone defects were created in the calvaria of ICR mice, and 0.5 or 1 µg/ml SN was applied. New bone formation was analyzed by micro-computed tomography (micro-CT) and histology. New blood vessel formation was assessed by CD34 immunohistochemistry. RESULTS: SN had no significant effect on proliferation and mineralization of MC3T3-E1 cells. However, SN partially induced the gene expression of osteoblast differentiation markers such as runt-related transcription factor 2, alkaline phosphatase, collagen type I alpha 1, and osteopontin. A significant increase of bone regeneration was observed in SN treated calvarial defects. The bone volume (BV), BV/tissue volume, trabecular thickness and trabecular number values were significantly increased in the collagen sponge plus 0.5 or 1 µg/ml SN group (p < 0.01) compared with the control group. Histologic analysis also revealed increased new bone formation in the SN-treated groups. Immunohistochemical staining of CD34 showed that the SN-treated groups contained more blood vessels compared with control in the calvarial defect area. CONCLUSION: SN increases new bone and blood vessel formation in a calvarial defect site. This study suggests that SN may enhance new bone formation through its potent angiogenic activity.


Subject(s)
Bone Regeneration , Neuropeptides , Osteogenesis , Secretogranin II , Animals , Mice , Mice, Inbred ICR , Neuropeptides/physiology , Secretogranin II/physiology , Skull/diagnostic imaging , X-Ray Microtomography
9.
Bioorg Med Chem Lett ; 30(18): 127429, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32731089

ABSTRACT

Suppression of differentiation and/or function of osteoclasts is considered an effective therapeutic strategy for osteolytic bone diseases such as periodontitis and osteoporosis. Evidence regarding the health benefits of oolong tea consumption is accumulating, and tea polyphenols have various pharmacological properties such as anti-cancer and anti-diabetes effects. In this study, we investigated the effect of oolonghomobisflavan B (OFB), a polyphenolic compound in oolong tea, on osteoclast differentiation. OFB suppressed receptor activator of nuclear factor-κB (RANKL)-induced formation of tartate-resistant acid phosphatase-positive multinuclear cells without cytotoxicity. OFB also significantly attenuated p38 phosphorylation, which is essential for RANKL-induced osteoclastogenesis, and inhibited the expressions of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) and osteoclast-specific target genes, including dendritic cell-specific transmembrane protein and cathepsin K. Our findings suggest that OFB exhibits an anti-osteoclastogenic activity by inhibiting RANKL-mediated p38 activation, which is useful for the prevention and treatment of osteolytic bone diseases.


Subject(s)
Cell Differentiation/drug effects , Osteogenesis/drug effects , Plant Extracts/chemistry , Polyphenols/chemistry , Tea/chemistry , p38 Mitogen-Activated Protein Kinases/metabolism , Cathepsin K/metabolism , Dendritic Cells , Drug Discovery , Enzyme Activation/drug effects , Humans , Membrane Proteins/metabolism , NF-kappa B/metabolism , Osteoclasts/cytology , Phosphorylation , Plant Extracts/pharmacology , Polyphenols/pharmacology , RANK Ligand/metabolism , Signal Transduction
10.
N Engl J Med ; 382(13): 1219-1231, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32212518

ABSTRACT

BACKGROUND: Patients with transfusion-dependent ß-thalassemia need regular red-cell transfusions. Luspatercept, a recombinant fusion protein that binds to select transforming growth factor ß superfamily ligands, may enhance erythroid maturation and reduce the transfusion burden (the total number of red-cell units transfused) in such patients. METHODS: In this randomized, double-blind, phase 3 trial, we assigned, in a 2:1 ratio, adults with transfusion-dependent ß-thalassemia to receive best supportive care plus luspatercept (at a dose of 1.00 to 1.25 mg per kilogram of body weight) or placebo for at least 48 weeks. The primary end point was the percentage of patients who had a reduction in the transfusion burden of at least 33% from baseline during weeks 13 through 24 plus a reduction of at least 2 red-cell units over this 12-week interval. Other efficacy end points included reductions in the transfusion burden during any 12-week interval and results of iron studies. RESULTS: A total of 224 patients were assigned to the luspatercept group and 112 to the placebo group. Luspatercept or placebo was administered for a median of approximately 64 weeks in both groups. The percentage of patients who had a reduction in the transfusion burden of at least 33% from baseline during weeks 13 through 24 plus a reduction of at least 2 red-cell units over this 12-week interval was significantly greater in the luspatercept group than in the placebo group (21.4% vs. 4.5%, P<0.001). During any 12-week interval, the percentage of patients who had a reduction in transfusion burden of at least 33% was greater in the luspatercept group than in the placebo group (70.5% vs. 29.5%), as was the percentage of those who had a reduction of at least 50% (40.2% vs. 6.3%). The least-squares mean difference between the groups in serum ferritin levels at week 48 was -348 µg per liter (95% confidence interval, -517 to -179) in favor of luspatercept. Adverse events of transient bone pain, arthralgia, dizziness, hypertension, and hyperuricemia were more common with luspatercept than placebo. CONCLUSIONS: The percentage of patients with transfusion-dependent ß-thalassemia who had a reduction in transfusion burden was significantly greater in the luspatercept group than in the placebo group, and few adverse events led to the discontinuation of treatment. (Funded by Celgene and Acceleron Pharma; BELIEVE ClinicalTrials.gov number, NCT02604433; EudraCT number, 2015-003224-31.).


Subject(s)
Activin Receptors, Type II/therapeutic use , Erythrocyte Transfusion/statistics & numerical data , Hematinics/therapeutic use , Immunoglobulin Fc Fragments/therapeutic use , Recombinant Fusion Proteins/therapeutic use , beta-Thalassemia/drug therapy , Activin Receptors, Type II/adverse effects , Adolescent , Adult , Aged , Double-Blind Method , Female , Ferritins/blood , Hematinics/adverse effects , Humans , Immunoglobulin Fc Fragments/adverse effects , Intention to Treat Analysis , Least-Squares Analysis , Male , Middle Aged , Odds Ratio , Recombinant Fusion Proteins/adverse effects , Splenectomy , Young Adult , beta-Thalassemia/genetics , beta-Thalassemia/surgery , beta-Thalassemia/therapy
11.
Epidemiol Health ; 41: e2019044, 2019.
Article in English | MEDLINE | ID: mdl-31623421

ABSTRACT

OBJECTIVES: The aim of this study was to estimate the medical surge capacity required for mass prophylaxis based on a hypothetical outbreak of smallpox. METHODS: We performed a simulation using the Bioterrorism and Epidemic Outbreak Response Model and varied some important parameters, such as the number of core medical personnel and the number of dispensing clinics. RESULTS: Gaps were identified in the medical surge capacity of the Korean government, especially in the number of medical personnel who could respond to the need for mass prophylaxis against smallpox. CONCLUSIONS: The Korean government will need to train 1,000 or more medical personnel for such an event, and will need to prepare many more dispensing centers than are currently available.


Subject(s)
Disease Outbreaks/prevention & control , Mass Vaccination/organization & administration , Smallpox Vaccine/administration & dosage , Smallpox/prevention & control , Clinical Competence , Computer Simulation , Health Facilities/supply & distribution , Health Workforce/statistics & numerical data , Humans , Republic of Korea/epidemiology , Smallpox/epidemiology
12.
Tissue Eng Regen Med ; 16(4): 405-413, 2019 08.
Article in English | MEDLINE | ID: mdl-31413944

ABSTRACT

Background: Xanthine derivatives have been used to treat a variety of medical conditions including respiratory disease and neural degeneration. However, few studies have reported their effects on bone regeneration. Therefore, we investigated the effects of KPR-A148, a synthetic xanthine derivative on osteoblast differentiation in vitro and bone regeneration in vivo. Methods: The cytotoxicity of KPR-A148 was evaluated using MC3T3-E1 cells by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltertrazolium bromide assay. The effects of KPR-A148 on osteoblast differentiation were examined by alkaline phosphatase staining, Alizarin red S staining, and real-time PCR of osteoblast differentiation marker genes. To investigate the effects of KPR-A148 on in vivo bone regeneration, a KPR-A148-containing collagen sponge was implanted into a mouse calvarial defect and KPR-A148 was injected twice, weekly. Bone regeneration was evaluated quantitatively by micro-CT and qualitatively by hematoxylin and eosin, as well as Masson's Trichrome staining. Results: KPR-A148 did not show toxicity in the MC3T3-E1 cells and promoted osteoblast differentiation in a concentration-dependent manner. 10 µM of KPR-A148 showed the most significant effect on alkaline phospatase staining and matrix mineralization. KPR-A148 increased the expression of osteoblast marker genes in both the early and late stages of differentiation. In addition, KPR-A148 significantly induced new bone formation in the calvarial defect model. Conclusion: These results demonstrate that KPR-A148 strongly induces osteoblast differentiation and new bone formation. Therefore, it could be used as a potential therapeutic agent for regenerating bone following its destruction by disease or trauma.


Subject(s)
Bone Regeneration/drug effects , Cell Differentiation/drug effects , Osteoblasts/drug effects , Osteogenesis/drug effects , Xanthine/pharmacology , Alkaline Phosphatase/metabolism , Animals , Biomarkers/metabolism , Cell Line , Collagen/metabolism , Mice , Osteoblasts/metabolism
13.
Nutrients ; 11(6)2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31234292

ABSTRACT

There is growing interest in bioactive substances from marine organisms for their potential use against diverse human diseases. Osteoporosis is a skeletal disorder associated with bone loss primarily occurring through enhanced osteoclast differentiation and resorption. Recently, we reported the anti-osteoclastogenic activity of fermented Pacific oyster (Crassostrea gigas) extract (FO) in vitro. The present study focused on investigating the anti-osteoporotic efficacy of FO in bone loss prevention in an experimental animal model of osteoporosis and elucidating the mechanism underlying its effects. Oral administration of FO significantly decreased ovariectomy-induced osteoclast formation and prevented bone loss, with reduced serum levels of bone turnover biomarkers including osteocalcin and C-terminal telopeptide fragment of type I collagen C-terminus (CTX). FO significantly suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced differentiation of bone marrow-derived macrophages (BMMs) into osteoclasts and attenuated the induction of osteoclast-specific genes required for osteoclastogenesis and bone resorption. Furthermore, FO inhibited RANKL-mediated IκBα and p65 phosphorylation in BMMs. Taken together, these results demonstrate that FO effectively suppresses osteoclastogenesis in vivo and in vitro, and that FO can be considered as a potential therapeutic option for the treatment of osteoporosis and osteoclast-mediated skeletal diseases.


Subject(s)
Bone Density Conservation Agents/pharmacology , Crassostrea/microbiology , Fermentation , Levilactobacillus brevis/physiology , Osteoclasts/drug effects , Osteogenesis/drug effects , Osteoporosis, Postmenopausal/prevention & control , Ovariectomy , Seafood/microbiology , Tibia/drug effects , Actins/metabolism , Animals , Bone Density Conservation Agents/isolation & purification , Cells, Cultured , Disease Models, Animal , Female , Humans , Mice, Inbred ICR , NF-kappa B/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , Osteoporosis, Postmenopausal/metabolism , Osteoporosis, Postmenopausal/pathology , Osteoporosis, Postmenopausal/physiopathology , Signal Transduction , Tibia/metabolism , Tibia/pathology , Tibia/physiopathology
14.
Toxicol Appl Pharmacol ; 355: 9-17, 2018 09 15.
Article in English | MEDLINE | ID: mdl-29935282

ABSTRACT

Since elevated osteoclast formation and/or activity by inhibitory responses against pathogens leads to diverse osteolytic bone diseases including periodontitis, inhibition of osteoclast differentiation and bone resorption has been a primary therapeutic strategy. In this study, we investigated the therapeutic potential of a novel benzamide-linked molecule, OCLI-070, for preventing alveolar bone loss in mice with ligature-induced experimental periodontitis. OCLI-070 inhibited osteoclast formation by acting on both early and late stages of differentiation, and attenuated the induction of nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) and the expression of osteoclast-specific genes. In addition, OCLI-070 significantly suppressed the formation of actin rings and resorption pits. Analysis of the inhibitory action of OCLI-070 showed that it markedly suppressed receptor activator of nuclear factor-κB ligand (RANKL)-induced extracellular signal-regulated kinase (ERK) and NF-κB signaling cascades. Moreover, OCLI-070 prevented ligature-induced alveolar bone erosion in mice by suppressing osteoclast formation. These findings demonstrate that OCLI-070 attenuated osteoclast differentiation and function as well as ligature-induced bone erosion by inhibiting RANKL-mediated ERK and NF-κB signaling pathways.


Subject(s)
Alveolar Bone Loss/prevention & control , Benzamides/pharmacology , NFATC Transcription Factors/antagonists & inhibitors , Osteoclasts/drug effects , Osteogenesis/drug effects , Protective Agents/pharmacology , Actins/biosynthesis , Animals , Cell Differentiation/drug effects , Ligation , MAP Kinase Signaling System/drug effects , Male , Mice , Mice, Inbred C57BL , NF-kappa B/drug effects , Periodontitis/prevention & control , RANK Ligand/biosynthesis
15.
Molecules ; 23(3)2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29558403

ABSTRACT

Obesity is a public concern and is responsible for various metabolic diseases. Xylobiose (XB), an alternative sweetener, is a major component of xylo-oligosaccharide. The purpose of this study was to investigate the effects of XB on obesity and its associated metabolic changes in related organs. For these studies, mice received a 60% high-fat diet supplemented with 15% d-xylose, 10% XB, or 15% XB as part of the total sucrose content of the diet for ten weeks. Body weight, fat and liver weights, fasting blood glucose, and blood lipids levels were significantly reduced with XB supplementation. Levels of leptin and adipokine were also improved and lipogenic and adipogenic genes in mesenteric fat and liver were down-regulated with XB supplementation. Furthermore, pro-inflammatory cytokines, fatty acid uptake, lipolysis, and ß-oxidation-related gene expression levels in mesenteric fat were down-regulated with XB supplementation. Thus, XB exhibited therapeutic potential for treating obesity which involved suppression of fat deposition and obesity-related metabolic disorders.


Subject(s)
Adipose Tissue/metabolism , Adiposity/drug effects , Disaccharides/pharmacology , Disaccharides/therapeutic use , Obesity/drug therapy , Obesity/metabolism , Adipogenesis/drug effects , Adipogenesis/genetics , Adipose Tissue/drug effects , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Cytokines/metabolism , Diet, High-Fat , Fatty Acids/metabolism , Gene Expression Regulation/drug effects , Inflammation Mediators/metabolism , Lipids/blood , Lipogenesis/drug effects , Lipogenesis/genetics , Lipolysis/drug effects , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Obesity/genetics , Obesity/prevention & control , Organ Size/drug effects , Oxidation-Reduction
16.
Nutrients ; 9(10)2017 Sep 21.
Article in English | MEDLINE | ID: mdl-28934139

ABSTRACT

Phyllodulcin is a natural sweetener found in Hydrangea macrophylla var. thunbergii. This study investigated whether phyllodulcin could improve metabolic abnormalities in high-fat diet (HFD)-induced obese mice. Animals were fed a 60% HFD for 6 weeks to induce obesity, followed by 7 weeks of supplementation with phyllodulcin (20 or 40 mg/kg body weight (b.w.)/day). Stevioside (40 mg/kg b.w./day) was used as a positive control. Phyllodulcin supplementation reduced subcutaneous fat mass, levels of plasma lipids, triglycerides, total cholesterol, and low-density lipoprotein cholesterol and improved the levels of leptin, adiponectin, and fasting blood glucose. In subcutaneous fat tissues, supplementation with stevioside or phyllodulcin significantly decreased mRNA expression of lipogenesis-related genes, including CCAAT/enhancer-binding protein α (C/EBPα), peroxisome proliferator activated receptor γ (PPARγ), and sterol regulatory element-binding protein-1C (SREBP-1c) compared to the high-fat group. Phyllodulcin supplementation significantly increased the expression of fat browning-related genes, including PR domain containing 16 (Prdm16), uncoupling protein 1 (UCP1), and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), compared to the high-fat group. Hypothalamic brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) signaling was upregulated by phyllodulcin supplementation. In conclusion, phyllodulcin is a potential sweetener that could be used to combat obesity by regulating levels of leptin, fat browning-related genes, and hypothalamic BDNF-TrkB signaling.


Subject(s)
Adipose Tissue, Brown/drug effects , Diet, High-Fat , Energy Metabolism/drug effects , Isocoumarins/pharmacology , Obesity/drug therapy , Subcutaneous Fat/drug effects , Sweetening Agents/pharmacology , Adiponectin/blood , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/physiopathology , Adiposity/drug effects , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Disease Models, Animal , Gene Expression Regulation , Hypothalamus/drug effects , Hypothalamus/metabolism , Leptin/blood , Lipids/blood , Male , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Subcutaneous Fat/metabolism , Subcutaneous Fat/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...