Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Clin Med ; 13(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38610758

ABSTRACT

Objectives: Augmented reality (AR) navigation systems are emerging to simplify and enhance the precision of medical procedures. Lumbosacral transforaminal epidural injection is a commonly performed procedure for the treatment and diagnosis of radiculopathy. Accurate needle placement while avoiding critical structures remains a challenge. For this purpose, we conducted a randomized controlled trial for our augmented reality navigation system. Methods: This randomized controlled study involved 28 patients, split between a traditional C-arm guided group (control) and an AR navigation guided group (AR-NAVI), to compare procedure efficiency and radiation exposure. The AR-NAVI group used a real-time tracking system displaying spinal structure and needle position on an AR head-mounted display. The procedural time and C-arm usage (radiation exposure) were measured. Results: All patients underwent successful procedures without complications. The AR-NAVI group demonstrated significantly reduced times and C-arm usage for needle entry to the target point (58.57 ± 33.31 vs. 124.91 ± 41.14, p < 0.001 and 3.79 ± 1.97 vs. 8.86 ± 3.94, p < 0.001). Conclusions: The use of the AR navigation system significantly improved procedure efficiency and safety by reducing time and radiation exposure, suggesting a promising direction for future enhancements and validation.

2.
J Med Food ; 26(5): 299-306, 2023 May.
Article in English | MEDLINE | ID: mdl-37074675

ABSTRACT

Collagen-derived dipeptides and tripeptides have various physiological activities. In this study, we compared the plasma kinetics of free Hyp, peptide-derived Hyp, Pro-Hyp, cyclo(Pro-Hyp), Hyp-Gly, Gly-Pro-Hyp, and Gly-Pro-Ala after ingestion of four different collagen samples: AP collagen peptide (APCP), general collagen peptide, collagen, and APCP and γ-aminobutyric acid (GABA) combination. Each peptide was measured by high-performance liquid chromatography and triple quadrupole mass spectrometer. We found that, among all the peptides that were analyzed, only Gly-Pro-Hyp was significantly increased after ingestion of APCP compared with that of general collagen peptides and collagen. In addition, ingestion of the APCP and GABA combination improved the absorption efficiency of Gly-Pro-Ala. Finally, we reveal that Gly-Pro-Hyp was effective for preventing H2O2-induced reduction in extracellular matrix (ECM)-related genes, COL1A, elastin, and fibronectin, in dermal fibroblasts. Taken together, APCP significantly enhances the absorption of Gly-Pro-Hyp, which might act as an ECM-associated signaling factor in dermal fibroblasts, and the APCP and GABA combination promotes Gly-Pro-Ala absorption. Clinical Trial Registration number: UMIN000047972.


Subject(s)
Collagen , Fibroblasts , Hydrogen Peroxide , Peptides , Absorption, Physiological , Collagen/administration & dosage , Collagen/chemistry , Eating , Fibroblasts/metabolism
3.
J Pain Res ; 16: 921-931, 2023.
Article in English | MEDLINE | ID: mdl-36960464

ABSTRACT

Purpose: Multiple studies have attempted to demonstrate the benefits of augmented reality (AR)-assisted navigation systems in surgery. Lumbosacral transforaminal epidural injection is an effective treatment commonly used in patients with radiculopathy due to spinal degenerative pathologies. However, few studies have applied AR-assisted navigation systems to this procedure. The study aimed to investigate the safety and effectiveness of an AR-assisted navigation system for transforaminal epidural injection. Patients and Methods: Through a real-time tracking system and a wireless network to the head-mounted display, computed tomography images of the spine and the path of a spinal needle to the target were visualized on a torso phantom with respiration movements installed. From L1/L2 to L5/S1, needle insertions were performed using an AR-assisted system on the left side of the phantom, and the conventional method was performed on the right side. Results: The procedure duration was approximately three times shorter, and the number of radiographs required was reduced in the experimental group compared to the control group. The distance from the needle tips to the target areas in the plan showed no significant difference between the two groups. (AR group 1.7 ± 2.3mm, control group 3.2 ± 2.8mm, P value 0.067). Conclusion: An AR-assisted navigation system may be used to reduce the time required for spinal interventions and ensure the safety of patients and physicians in view of radiation exposure. Further studies are essential to apply AR-assisted navigation systems to spine interventions.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4705-4708, 2021 11.
Article in English | MEDLINE | ID: mdl-34892262

ABSTRACT

An augmented reality (AR)-assisted surgical navigation system was developed for epidural needle intervention. The system includes three components: a virtual reality-based surgical planning software, a patient and tool tracking system, and an AR-based surgical navigation system. A three-dimensional (3D) path plan for the epidural needle was established on the preoperative computed tomography (CT) image. The plan is then registered to the intraoperative space by 3D models of the target vertebrae using skin markers and real-time tracking information. In the procedure, the plan and tracking information are transmitted to the head-mounted display (HMD) through a wireless network such that the device directly visualizes the plan onto the back surface of the patient. The physician determines the entry point and inserts the needle into the target based on the direct visual guidance of the system. An experiment was conducted to validate the system using two torso phantoms that mimic human respiration. The experimental results demonstrated that the time and the number of X-rays required for needle insertion were significantly decreased by the proposed method (43.6±20.55sec, 2.9±1.3times) compared to those of the conventional fluoroscopy-guided approach (124.5 ± 46.7s, 9.3±2.4times), whereas the average targeting errors were similar in both cases. The proposed system may potentially decrease ionizing radiation exposure not only to the patient but also to the medical team.


Subject(s)
Augmented Reality , Surgery, Computer-Assisted , Fluoroscopy , Humans , Phantoms, Imaging , Surgical Navigation Systems
5.
Nutrients ; 13(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34959923

ABSTRACT

The stratum corneum (SC) is the outermost layer of the epidermis and plays an important role in maintaining skin moisture and protecting the skin from the external environment. Ceramide and natural moisturizing factor (NMF) are the major SC components that maintain skin moisture. In this study, we investigated whether the oral intake of enzymatically decomposed AP collagen peptides (APCPs) can improve skin moisture and barrier function by assessing changes in the ceramide and NMF contents in the SC after APCP ingestion with the aim to develop a skin functional food. Fifty participants orally ingested APCP (1000 mg) or placebo for 12 weeks, and then, skin hydration and skin texture were evaluated. SC samples were collected to analyze skin scaling, ceramide, and NMF contents. Participants in the APCP group exhibited improved skin moisture content by 7.33% (p = 0.031) and roughness by -4.09% (p = 0.036) when compared with those in the placebo group. NMF content; the amounts of amino acids (AA), including glycine and proline; and AA derivatives were significantly increased in the APCP group (31.98 µg/mg protein) compared to those in the placebo group (-16.01 µg/mg protein) (p = 0.006). The amounts of total ceramides and ceramide subclasses were significantly higher in the APCP group than in the placebo group (p = 0.014). In conclusion, our results demonstrate that APCP intake improves skin moisture and increase the ceramide and NMF contents in the SC, thereby enhancing the skin barrier function.


Subject(s)
Body Water/metabolism , Ceramides/metabolism , Collagen/administration & dosage , Collagen/pharmacology , Dietary Supplements , Eating/physiology , Epidermis/metabolism , Adult , Female , Humans , Male , Middle Aged , Water Loss, Insensible/drug effects
6.
Nano Lett ; 21(1): 258-264, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33372784

ABSTRACT

Nanoparticle supercrystals (NPSCs) are of great interest as materials with emergent properties. Different types of intermolecular forces, such as van der Waals interaction and hydrogen bonding, are present in the NPSCs fabricated to date. However, the limited structural stability of such NPSCs that results from the weakness of these intermolecular forces is a challenge. Here, we report a spontaneous formation of NPSCs driven by covalent bonding interactions, a type of intramolecular force much stronger than the above-mentioned intermolecular forces. A model solution-phase anhydride reaction is used to form covalent bonds between molecules grafted on the surface of gold nanoparticles, resulting in three-dimensional NPSCs. The NPSCs are very stable in different solvents, in dried conditions, and at temperatures as high as 160 °C. In addition to this, the large library of covalent-bond-forming reactions available and the low cost of reactants make the covalent bonding approach highly versatile and economical.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 4732-4736, 2020 07.
Article in English | MEDLINE | ID: mdl-33019048

ABSTRACT

We present a novel method to estimate the 3D pose and curvature of bendable interventional devices using a single X-ray image. A preliminary experiment was performed to demonstrate the feasibility of the proposed method. The mean estimation accuracies were 3.48mm and 0.59mm for the 3D pose and the radius of curvature of the bendable cardiac ablation catheter, respectively. This method has the potential to help clinicians to make a better intraoperative decision during the procedure, resulting in expedite surgery and reduce exposure to ionizing radiation.Clinical relevance- This novel method has the potential to improve clinician's intraoperative decision-making by providing the 3D pose and curvature information of bendable interventional devices, such as flexible catheter and endoscope.


Subject(s)
Catheter Ablation , Endoscopes , Cardiac Catheters , Heart , X-Rays
9.
Sci Rep ; 10(1): 9361, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32518356

ABSTRACT

The composites and thin films comprising individual single-walled carbon nanotubes with a polymer coating (p-CNTs) have been prepared and their electromagnetic responses have been studied in a wide range from low-frequency (25-107 Hz) up to the infrared region. In spite of the high volume fraction of the nanotubes (up to 3.3%), the polymer coating prevents direct p-CNT contacts and the formation of the percolation network in those composites, so that p-CNTs interact only via the electromagnetic coupling. Thereby it is an ideal model system to verify experimentally the fundamental issues related to carbon nanotube electromagnetics, such as the influence of inter-tube electron tunneling on the localized plasmon resonance in the terahertz range, or the infrared absorption enhancement of polymer molecules attached to the nanotube surface. Along with addressing the fundamentals, applied carbon nanotube electromagnetics got insights important for the applications of p-CNT based composites as dielectric media in the terahertz regime. In particular, we found that the real part of the permittivity of the p-CNT film in the terahertz range is rather competitive, i.e. 8-13, however the loss tangent is not so small (0.4-0.6) as has been predicted. The way to increase p-CNT terahertz performance is also discussed.

10.
J Endourol ; 34(9): 900-904, 2020 09.
Article in English | MEDLINE | ID: mdl-32292044

ABSTRACT

Introduction: Accurate estimation of stone fragment size during ureteroscopic lithotripsy procedures facilitates operative efficiency and predicts the safety of fragment extraction or spontaneous passage. Using a novel stone measurement software application, this study assesses the feasibility of performing integrated real-time digital stone measurement during ureteroscopy. Methods: This workflow feasibility study was conducted in two phases. First, in the ex vivo simulation, mock stone fragments were placed in a renal collecting system training model. A basket extraction task was performed using a digital ureteroscope, with and without digital stone measurement. The time required to perform the tasks was recorded and compared. Second, in the in vivo workflow trial, adult patients undergoing ureteroscopic stone procedures were prospectively enrolled. Intraoperative measurements of stone fragments were performed to determine the time required to complete the measurements. Technical failures and perioperative complications were recorded. Results: In the ex vivo simulation, 20 mock stones mimicking varied fragmentation conditions were tested in the training model. The mean completion time of the basketing task without vs with digital stone measurement was 16.5 seconds (range 10.2-33.7) vs 38.9 seconds (range 27.2-60.0). Mean additional time required to measure stones was 22.3 seconds (range 8.4-42.7). In the in vivo workflow trial, nine patients undergoing ureteroscopy were enrolled. A median of five fragments (range 3-10) were measured in each patient. Mean completion time for each measurement was 10.1 seconds (range 8.2-12.8). Mean total time required to perform digital measurement per procedure was 50.8 seconds (range 25.9-99.0). No technical failures or clinical complications were observed. Conclusions: Integrating real-time digital stone measurement during ureteroscopy is safe and feasible. The findings support clinical trials of digital stone measurement to enhance intraoperative decision-making during ureteroscopy.


Subject(s)
Kidney Calculi , Ureteral Calculi , Adult , Feasibility Studies , Humans , Kidney Calculi/surgery , Ureteral Calculi/surgery , Ureteroscopy , Workflow
11.
J Endourol ; 34(5): 619-623, 2020 05.
Article in English | MEDLINE | ID: mdl-32164449

ABSTRACT

Objective: In recent years, there has been increasing interest in the use of ultrasound guidance for endoscopic and percutaneous procedures. Kidney mockups could be used for training, however, available mockups are normally incompatible with ultrasound imaging. We developed a reproducible method to manufacture an ultrasound-compatible collecting system mockup that can be made at urology laboratories. Methods: Positive and negative molding methods were used. A three-dimensional (3D) digital model of a urinary collecting system and the overlying skin surface were segmented from computed tomography. A containment mold (negative) was made following the shape of the skin surface using 3D printing. A collecting system mold (positive) was also 3D printed, but made of a dissolvable material. The containment mold was filled with a gelatin formula with the collecting system mold submersed in situ within. After the gelatin solidified, a solution was used to dissolve the collecting system mold, but not the gelatin, leaving a cavity with the shape of the collecting system. The gelatin was extracted from the container mockup and the collecting system cavity was filled with water. The mockup was imaged with ultrasound to assess echogenicity and suitability for simulating ultrasound-guided procedures. Results: A clear shape corresponding to the collecting system was observed inside the gel structure. Structural integrity was maintained with no observable manufacturing marks or separation seams. Ultrasound images of the mockup demonstrated clear differentiation at the gelatin/water interface. A mock stone was placed in the collecting system and needle targeted to simulate percutaneous needle access. Conclusion: We developed a simple method to manufacture a personalized mockup of the renal collecting system of a patient that can be used for ultrasound-guided percutaneous needle access. Generic collecting system mockups can be used for training, and patient-specific models can be used to simulate and decide the best access path before a clinical case.


Subject(s)
Kidney Calculi , Nephrostomy, Percutaneous , Urology , Humans , Kidney/diagnostic imaging , Ultrasonography
12.
Minim Invasive Ther Allied Technol ; 28(4): 199-205, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30822190

ABSTRACT

Objective: Needle insertion is a common component of most diagnostic and therapeutic interventions. Needles with asymmetrically sharpened points such as the bevel point are ubiquitous. Their insertion path is typically curved due to the rudder effect at the point. However, the common planned path is straight, leading to targeting errors. We present a simple technique that may substantially reduce these errors. The method was inspired by practical experience, conceived mathematically, and refined experimentally. Methods: Targeting errors are reduced by flipping the bevel on the opposite side (rotating the needle 180° about its axis), at a certain depth during insertion. The ratio of the flip depth to the full depth of insertion is defined as the flip depth ratio (FDR). Based on a model, FDR is constant 0.3. Results: Experimentally, the ratio depends on the needle diameter, 0.35 for 20Ga and 0.45 for 18Ga needles. Thinner needles should be flipped a little shallower, but never less than 0.3. Conclusion: Practically, a physician may expect to reduce ∼80% of needle deflection errors by simply flipping the needle. The technique may be used by hand or with guidance devices.


Subject(s)
Diagnostic Techniques and Procedures/instrumentation , Injections/instrumentation , Injections/methods , Mechanical Phenomena , Needles , Punctures/instrumentation , Punctures/methods , Humans , Models, Theoretical
13.
Nano Lett ; 19(4): 2313-2321, 2019 04 10.
Article in English | MEDLINE | ID: mdl-30673238

ABSTRACT

Nanoparticle superlattices (NPSLs) are of great interest as materials with designed emerging properties depending on the lattice symmetry as well as composition. The symmetry transition of NPSLs depending on environmental conditions can be an excellent ground for making new stimuli-responsive functional materials. Here, we report a spherical micelle-assisted method to form exceptionally ordered NPSLs which are inherently sensitive to environmental conditions. Upon mixing functionalized gold nanoparticles (AuNPs) with a nonionic surfactant spherical micellar solution, NPSLs of different symmetries such as NaZn13, MgZn2, and AlB2-type are formed depending on the size ratio between micelles and functionalized AuNPs and composition. The NPSLs formed by the spherical micelle-assisted method show thermally reversible order-order (NaZn13-AlB2) and order-disorder (MgZn2-isotropic) symmetry transitions, which are consistent with the Gibbs free energy calculations for binary hard-sphere model. This approach may open up new possibilities for NPSLs as stimuli-responsive functional materials.

14.
IEEE Trans Biomed Eng ; 66(9): 2527-2537, 2019 09.
Article in English | MEDLINE | ID: mdl-30624210

ABSTRACT

We present a robot-assisted approach for transrectal ultrasound (TRUS) guided prostate biopsy. The robot is a hands-free probe manipulator that moves the probe with the same 4 DoF that are used manually. Software was developed for three-dimensional (3-D) imaging, biopsy planning, robot control, and navigation. Methods to minimize the deformation of the prostate caused by the probe at 3-D imaging and needle targeting were developed to reduce biopsy targeting errors. We also present a prostate coordinate system (PCS). The PCS helps defining a systematic biopsy plan without the need for prostate segmentation. Comprehensive tests were performed, including two bench tests, one imaging test, two in vitro targeting tests, and an IRB-approved clinical trial on five patients. Preclinical tests showed that image-based needle targeting can be accomplished with accuracy on the order of 1 mm. Prostate biopsy can be accomplished with minimal TRUS pressure on the gland and submillimetric prostate deformations. All five clinical cases were successful with an average procedure time of 13 min and millimeter targeting accuracy. Hands-free TRUS operation, transrectal TRUS guided prostate biopsy with minimal prostate deformations, and the PCS-based biopsy plan are novel methods. Robot-assisted prostate biopsy is safe and feasible. Accurate needle targeting has the potential to increase the detection of clinically significant prostate cancer.


Subject(s)
Image-Guided Biopsy/methods , Prostate , Prostatic Neoplasms , Robotic Surgical Procedures/methods , Ultrasonography/methods , Equipment Design , Humans , Image-Guided Biopsy/instrumentation , Male , Prostate/diagnostic imaging , Prostate/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Robotic Surgical Procedures/instrumentation , Ultrasonography/instrumentation
15.
Int J Comput Assist Radiol Surg ; 14(1): 147-156, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30456451

ABSTRACT

RATIONALE AND OBJECTIVES: We have designed and constructed an MR-safe robot made entirely of nonmetallic components with pneumatic actuators and optical encoders. The robot was developed to enable bone biopsies to be performed under magnetic resonance imaging (MRI) guidance in pediatric patients. The purpose of this study was to show the feasibility of using the robot for biopsy of the femur and tibia in a cadaver leg. Our long-term goal is to eliminate radiation exposure during bone biopsy procedures and provide more timely and accurate diagnosis for children with bone cancers and bone infections. METHODS: The MR-safe robot was mounted on the MRI table. A cadaver leg was procured from an anatomy supply house and placed on the MRI table. All required hospital precautions for infection control were taken. A total of 10 biopsy targets were sampled using MRI guidance: five from the femur and five from the tibia. A handheld, commercially available battery-powered bone drill was used to facilitate drilling through the cortex. After the study, the leg was scanned with CT to better visualize and document the bone biopsy sites. Both the MRI and CT images were used to analyze the results. RESULTS: All of the targets were successfully reached with an average targeting accuracy of 1.43 mm. A workflow analysis showed the average time for the first biopsy was 41 min including robot setup time and 22 min for each additional biopsy including the time for the repeat MRI scan used to confirm accurate targeting. The robot was shown to be MRI transparent, as no image quality degradation due to the use of the robot was detected. CONCLUSION: The results showed the feasibility of using an MR-safe robotic system to assist the interventional radiologist in performing precision bone biopsy under MRI guidance. Future work will include developing an MR-safe drill, improving the mounting of the robot and fixation of the leg, and moving toward first in child clinical trials.


Subject(s)
Bone and Bones/pathology , Magnetic Resonance Imaging/methods , Robotics , Biopsy/methods , Bone and Bones/diagnostic imaging , Cadaver , Feasibility Studies , Humans , Tomography, X-Ray Computed
16.
IEEE Trans Biomed Eng ; 65(1): 165-177, 2018 01.
Article in English | MEDLINE | ID: mdl-28459678

ABSTRACT

We report the development of a new robotic system for direct image-guided interventions (DIGI; images acquired at the time of the intervention). The manipulator uses our previously reported pneumatic step motors and is entirely made of electrically nonconductive, nonmetallic, and nonmagnetic materials. It orients a needle-guide with two degrees of freedom (DoF) about a fulcrum point located below the guide using an innovative remote center of motion parallelogram type mechanism. The depth of manual needle insertion is preset with a third DoF, located remotely of the manipulator. Special consideration was given to the kinematic accuracy and the structural stiffness. The manipulator includes registration markers for image-to-robot registration. Based on the images, it may guide needles, drills, or other slender instruments to a target (OD < 10 mm). Comprehensive preclinical tests were performed. The manipulator is MR safe (ASTM F2503-13). Electromagnetic compatibility (EMC) testing (IEC 60601-1-2) of the system shows that it does not conduct or radiate EM emissions. The change in the signal to noise ratio of the MRI due to the presence and motion of the robot in the scanner is below 1%. The structural stiffness at the needle-guide is 33 N/mm. The angular accuracy and precision of the manipulator itself are 0.177° and 0.077°. MRI-guided targeting accuracy and precision in vitro were 1.71 mm and 0.51 mm, at an average target depth of ∼38 mm, with no adjustments. The system may be suitable for DIGI where [mm] accuracy lateral to the needle (2D) or [mm] in 3D is acceptable. The system is also multi-imager compatible and could be used with other imaging modalities.


Subject(s)
Magnetic Resonance Imaging/instrumentation , Robotic Surgical Procedures/instrumentation , Surgery, Computer-Assisted/instrumentation , Surgery, Computer-Assisted/methods , Algorithms , Equipment Design , Models, Theoretical , Reproducibility of Results
17.
Acad Radiol ; 25(1): 74-81, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29074334

ABSTRACT

RATIONALE AND OBJECTIVES: Our research team has developed a magnetic resonance imaging (MRI)-compatible robot for long bone biopsy. The robot is intended to enable a new workflow for bone biopsy in pediatrics under MRI imaging. Our long-term objectives are to minimize trauma and eliminate radiation exposure when diagnosing children with bone cancers and bone infections. This article presents our robotic systems, phantom accuracy studies, and workflow analysis. MATERIALS AND METHODS: This section describes several aspects of our work including the envisioned clinical workflow, the MRI-compatible robot, and the experimental setup. The workflow consists of five steps and is intended to enable the entire procedure to be completed in the MRI suite. The MRI-compatible robot is MR Safe, has 3 degrees of freedom, and a remote center of motion mechanism for orienting a needle guide. The accuracy study was done in a Siemens Aera 1.5T scanner with a long bone phantom. Four targeting holes were drilled in the phantom. RESULTS: Each target was approached twice at slightly oblique angles using the robot needle guide for a total of eight attempts. A workflow analysis showed the average time for each targeting attempt was 32 minutes, including robot setup time. The average 3D targeting error was 1.39 mm with a standard deviation of 0.40 mm. All of the targets were successfully reached. CONCLUSION: The results showed the ability of the robotic system in assisting the radiologist to precisely target a bone phantom in the MRI environment. The robot system has several potential advantages for clinical application, including the ability to work at the MRI isocenter and serve as a steady and precise guide.


Subject(s)
Bone and Bones/pathology , Image-Guided Biopsy/methods , Magnetic Resonance Imaging , Robotic Surgical Procedures , Humans , Models, Biological , Phantoms, Imaging , Workflow
18.
J Endourol ; 32(1): 34-39, 2018 01.
Article in English | MEDLINE | ID: mdl-29084456

ABSTRACT

INTRODUCTION: Currently, stone size cannot be accurately measured while performing flexible ureteroscopy (URS). We developed novel software for ureteroscopic, stone size measurement, and then evaluated its performance. METHODS: A novel application capable of measuring stone fragment size, based on the known distance of the basket tip in the ureteroscope's visual field, was designed and calibrated in a laboratory setting. Complete URS procedures were recorded and 30 stone fragments were extracted and measured using digital calipers. The novel software program was applied to the recorded URS footage to obtain ureteroscope-derived stone size measurements. These ureteroscope-derived measurements were then compared with the actual-measured fragment size. RESULTS: The median longitudinal and transversal errors were 0.14 mm (95% confidence interval [CI] 0.1, 0.18) and 0.09 mm (95% CI 0.02, 0.15), respectively. The overall software accuracy and precision were 0.17 and 0.15 mm, respectively. The longitudinal and transversal measurements obtained by the software and digital calipers were highly correlated (r = 0.97 and 0.93). Neither stone size nor stone type was correlated with error measurements. CONCLUSIONS: This novel method and software reliably measured stone fragment size during URS. The software ultimately has the potential to make URS safer and more efficient.


Subject(s)
Diagnosis, Computer-Assisted/methods , Ureteroscopy/methods , Urinary Calculi/diagnosis , Adult , Aged , Humans , Male , Middle Aged , Software , Ureteroscopes , Ureteroscopy/instrumentation , Urinary Calculi/diagnostic imaging
19.
IEEE ASME Trans Mechatron ; 22(1): 115-126, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28867930

ABSTRACT

Compatibility of mechatronic devices with the MR environment has been a very challenging engineering task. After over a decade of developments, we report the successful translation to clinical trials of our MR Safe robot technology. MrBot is a 6-degree-of-freedom, pneumatically actuated robot for transperineal prostate percutaneous access, built exclusively of electrically nonconductive and nonmagnetic materials. Its extensive pre-clinical tests have been previously reported. Here, we present the latest technology developments, an overview of the regulatory protocols, and technically related results of the clinical trial. The FDA has approved the MrBot for the biopsy trial, which was successfully performed in 5 patients. With no trajectory corrections, and no unsuccessful attempts to target a site, the robot achieved an MRI based needle targeting accuracy of 2.55 mm. To the best of our knowledge, this is the first robot approved by the FDA for the MR environment. The results confirm that it is possible to perform safe and accurate robotic manipulation in the MRI scanner, and the development of MR Safe robots is no longer a daunting technical challenge.

20.
Nat Commun ; 8(1): 360, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842555

ABSTRACT

Synthesis of binary nanoparticle superlattices has attracted attention for a broad spectrum of potential applications. However, this has remained challenging for one-dimensional nanoparticle systems. In this study, we investigate the packing behavior of one-dimensional nanoparticles of different diameters into a hexagonally packed cylindrical micellar system and demonstrate that binary one-dimensional nanoparticle superlattices of two different symmetries can be obtained by tuning particle diameter and mixing ratios. The hexagonal arrays of one-dimensional nanoparticles are embedded in the honeycomb lattices (for AB2 type) or kagome lattices (for AB3 type) of micellar cylinders. The maximization of free volume entropy is considered as the main driving force for the formation of superlattices, which is well supported by our theoretical free energy calculations. Our approach provides a route for fabricating binary one-dimensional nanoparticle superlattices and may be applicable for inorganic one-dimensional nanoparticle systems.Binary mixtures of 1D particles are rarely observed to cooperatively self-assemble into binary superlattices, as the particle types separate into phases. Here, the authors design a system that avoids phase separation, obtaining binary superlattices with different symmetries by simply tuning the particle diameter and mixture composition.

SELECTION OF CITATIONS
SEARCH DETAIL
...