Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202402880, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758629

ABSTRACT

Lysine-specific peptide and protein modification strategies are widely used to study charge-related functions and applications. However, these strategies often result in the loss of the positive charge on lysine, significantly impacting the charge-related properties of proteins. Herein, we report a strategy to preserve the positive charge and selectively convert amines in lysine side chains to amidines using nitriles and hydroxylamine under aqueous conditions. Various unprotected peptides and proteins were successfully modified with a high conversion rate. Moreover, the reactive amidine moiety and derived modification site enable subsequent secondary modifications. Notably, positive charges were retained during the modification. Therefore, positive charge-related protein properties, such as liquid‒liquid phase separation behaviour of α-synuclein, were not affected. This strategy was subsequently applied to a lysine rich protein to develop an amidine-containing coacervate DNA complex with outstanding mechanical properties. Overall, our innovative strategy provides a new avenue to explore the characteristics of positively charged proteins.

2.
Nat Commun ; 15(1): 2677, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38538591

ABSTRACT

α-Synuclein forms amyloid fibrils that are critical in the progression of Parkinson's disease and serves as the pathological hallmark of this condition. Different posttranslational modifications have been identified at multiple sites of α-synuclein, influencing its conformation, aggregation and function. Here, we investigate how disease-related phosphorylation and O-GlcNAcylation at the same α-synuclein site (S87) affect fibril structure and neuropathology. Using semi-synthesis, we obtained homogenous α-synuclein monomer with site-specific phosphorylation (pS87) and O-GlcNAcylation (gS87) at S87, respectively. Cryo-EM revealed that pS87 and gS87 α-synuclein form two distinct fibril structures. The GlcNAc situated at S87 establishes interactions with K80 and E61, inducing a unique iron-like fold with the GlcNAc molecule on the iron handle. Phosphorylation at the same site prevents a lengthy C-terminal region including residues 73 to 140 from incorporating into the fibril core due to electrostatic repulsion. Instead, the N-terminal half of the fibril (1-72) takes on an arch-like fibril structure. We further show that both pS87 and gS87 α-synuclein fibrils display reduced neurotoxicity and propagation activity compared with unmodified α-synuclein fibrils. Our findings demonstrate that different posttranslational modifications at the same site can produce distinct fibril structures, which emphasizes link between posttranslational modifications and amyloid fibril formation and pathology.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Phosphorylation , Parkinson Disease/pathology , Protein Processing, Post-Translational , Amyloid/metabolism , Iron
3.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Article in English | MEDLINE | ID: mdl-34172566

ABSTRACT

The spread of pathological α-synuclein (α-syn) is a crucial event in the progression of Parkinson's disease (PD). Cell surface receptors such as lymphocyte activation gene 3 (LAG3) and amyloid precursor-like protein 1 (APLP1) can preferentially bind α-syn in the amyloid over monomeric state to initiate cell-to-cell transmission. However, the molecular mechanism underlying this selective binding is unknown. Here, we perform an array of biophysical experiments and reveal that LAG3 D1 and APLP1 E1 domains commonly use an alkaline surface to bind the acidic C terminus, especially residues 118 to 140, of α-syn. The formation of amyloid fibrils not only can disrupt the intramolecular interactions between the C terminus and the amyloid-forming core of α-syn but can also condense the C terminus on fibril surface, which remarkably increase the binding affinity of α-syn to the receptors. Based on this mechanism, we find that phosphorylation at serine 129 (pS129), a hallmark modification of pathological α-syn, can further enhance the interaction between α-syn fibrils and the receptors. This finding is further confirmed by the higher efficiency of pS129 fibrils in cellular internalization, seeding, and inducing PD-like α-syn pathology in transgenic mice. Our work illuminates the mechanistic understanding on the spread of pathological α-syn and provides structural information for therapeutic targeting on the interaction of α-syn fibrils and receptors as a potential treatment for PD.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Amyloid/metabolism , Antigens, CD/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Animals , Cell Line, Tumor , Endocytosis , Humans , Mice , Nerve Degeneration/pathology , Neurons/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Static Electricity , alpha-Synuclein/chemistry , alpha-Synuclein/toxicity , Lymphocyte Activation Gene 3 Protein
4.
Chem Commun (Camb) ; 56(83): 12632-12635, 2020 Oct 25.
Article in English | MEDLINE | ID: mdl-32960198

ABSTRACT

We developed a late-stage modification strategy by a phospha-Michael addition reaction between various functional phosphines and unprotected dehydroalanine (Dha) peptides and proteins under mild conditions. This strategy was applied to generate a staple peptide to enhance its cell membrane penetrability, and it was also able to regulate α-synuclein aggregation properties and morphological characteristics with the addition of different charges.


Subject(s)
Peptides/chemistry , Phosphines/chemistry , Fluorescein/chemistry , Humans , MCF-7 Cells , Microscopy, Confocal , Peptides/metabolism , Protein Aggregates , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
5.
Proc Natl Acad Sci U S A ; 117(33): 20305-20315, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32737160

ABSTRACT

Posttranslational modifications (PTMs) of α-synuclein (α-syn), e.g., phosphorylation, play an important role in modulating α-syn pathology in Parkinson's disease (PD) and α-synucleinopathies. Accumulation of phosphorylated α-syn fibrils in Lewy bodies and Lewy neurites is the histological hallmark of these diseases. However, it is unclear how phosphorylation relates to α-syn pathology. Here, by combining chemical synthesis and bacterial expression, we obtained homogeneous α-syn fibrils with site-specific phosphorylation at Y39, which exhibits enhanced neuronal pathology in rat primary cortical neurons. We determined the cryo-electron microscopy (cryo-EM) structure of the pY39 α-syn fibril, which reveals a fold of α-syn with pY39 in the center of the fibril core forming an electrostatic interaction network with eight charged residues in the N-terminal region of α-syn. This structure composed of residues 1 to 100 represents the largest α-syn fibril core determined so far. This work provides structural understanding on the pathology of the pY39 α-syn fibril and highlights the importance of PTMs in defining the polymorphism and pathology of amyloid fibrils in neurodegenerative diseases.


Subject(s)
Parkinson Disease , alpha-Synuclein/chemistry , Amyloid/chemistry , Amyloid/metabolism , Animals , Cells, Cultured , Cryoelectron Microscopy , Gene Expression Regulation/drug effects , Humans , Models, Molecular , Neurons/drug effects , Neurons/metabolism , Phosphorylation , Protein Conformation , Rats , Rats, Sprague-Dawley , alpha-Synuclein/chemical synthesis , alpha-Synuclein/metabolism
6.
Chemistry ; 26(16): 3499-3503, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32011042

ABSTRACT

It has been reported that many molecules could inhibit the aggregation of Aß (amyloid-ß) through suppressing either primary nucleation, secondary nucleation, or elongation processes. In order to suppress multiple pathways of Aß aggregation, we screened 23 small molecules and found two types of inhibitors with different inhibiting mechanisms based on chemical kinetics analysis. Trp-glucose conjugates (AS2) could bind with fibril ends while natural products (D3 and D4) could associate with monomers. A cocktail of these two kinds of molecules achieved co-inhibition of various fibrillar species and avoid unwanted interference.


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/chemistry , Biological Products/chemistry , Biological Products/pharmacology , Drug Design , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...