Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(7): 4541-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26820496

ABSTRACT

Silicon oxides (SiOx) have attracted recent attention for their great potential as promising anode materials for lithium ion batteries as a result of their high energy density and excellent cycle performance. Despite these advantages, the commercial use of these materials is still impeded by low initial Coulombic efficiency and high production cost associated with a complicated synthesis process. Here, we demonstrate that Si/SiOx nanosphere anode materials show much improved performance enabled by electroconductive black TiO(2-x) coating in terms of reversible capacity, Coulombic efficiency, and thermal reliability. The resulting anode material exhibits a high reversible capacity of 1200 mAh g(-1) with an excellent cycle performance of up to 100 cycles. The introduction of a TiO(2-x) layer induces further reduction of the Si species in the SiOx matrix phase, thereby increasing the reversible capacity and initial Coulombic efficiency. Besides the improved electrochemical performance, the TiO(2-x) coating layer plays a key role in improving the thermal reliability of the Si/SiOx nanosphere anode material at the same time. We believe that this multipurpose interfacial engineering approach provides another route toward high-performance Si-based anode materials on a commercial scale.

2.
ChemSusChem ; 8(19): 3255-62, 2015 Oct 12.
Article in English | MEDLINE | ID: mdl-26289748

ABSTRACT

Critical degradation mechanism of many cathode materials for Li-ion batteries is closely related to phase transformations at the surface/interface. Li2MnO3 in x Li2MnO3 ⋅(1-x) LiMO2 (M=Ni, Co, Mn) provides high capacity, but the Li2MnO3 phase is known to degrade during cycling through phase transformation and O2 evolution. To resolve such degradation problems, it is critical to develop a fundamental understanding of the underlying mechanism. Using first-principles calculations, we identified the surface delithiation potential (<4.5 V vs. Li/Li(+) ) of Li2MnO3, which is significantly lower than the bulk redox potential. A lower Mn oxidation state at the surface would reduce the delithiation potential compared with the fully oxidized Mn(4+) in the bulk. As a result, the delithiation would be initiated from the surface, which induces a phase transformation of Li2MnO3 into a spinel-like structure from the surface. These theoretical findings have been confirmed by experimental analyses. Based on these detailed mechanistic understanding, it would be possible to develop rational approaches to modify and coat the surface to suppress degradation mechanisms.


Subject(s)
Electric Power Supplies , Lithium/chemistry , Manganese/chemistry , Oxides/chemistry , Electrodes , Models, Molecular , Molecular Conformation , Oxidation-Reduction , Reproducibility of Results , Surface Properties
3.
ChemSusChem ; 7(11): 3138-44, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25208971

ABSTRACT

Lithium-ion hybrid capacitors have attracted great interest due to their high specific energy relative to conventional electrical double-layer capacitors. Nevertheless, the safety issue still remains a drawback for lithium-ion capacitors in practical operational environments because of the use of metallic lithium. Herein, single-phase Li5FeO4 with an antifluorite structure that acts as an alternative lithium source (instead of metallic lithium) is employed and its potential use for lithium-ion capacitors is verified. Abundant Li(+) amounts can be extracted from Li5FeO4 incorporated in the positive electrode and efficiently doped into the negative electrode during the first electrochemical charging. After the first Li(+) extraction, Li(+) does not return to the Li5FeO4 host structure and is steadily involved in the electrochemical reactions of the negative electrode during subsequent cycling. Various electrochemical and structural analyses support its superior characteristics for use as a promising lithium source. This versatile approach can yield a sufficient Li(+)-doping efficiency of >90% and improved safety as a result of the removal of metallic lithium from the cell.


Subject(s)
Electric Power Supplies , Iron/chemistry , Lithium/chemistry , Electrodes , Oxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...