Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Atmos ; 125(5)2020 Mar 16.
Article in English | MEDLINE | ID: mdl-33959467

ABSTRACT

The Global Modeling and Assimilation Office (GMAO) has recently released a new version of the Goddard Earth Observing System (GEOS) Sub-seasonal to Seasonal prediction (S2S) system, GEOS-S2S-2, that represents a substantial improvement in performance and infrastructure over the previous system. The system is described here in detail, and results are presented from forecasts, climate equillibrium simulations and data assimilation experiments. The climate or equillibrium state of the atmosphere and ocean showed a substantial reduction in bias relative to GEOS-S2S-1. The GEOS-S2S-2 coupled reanalysis also showed substantial improvements, attributed to the assimilation of along-track Absolute Dynamic Topography. The forecast skill on subseasonal scales showed a much-improved prediction of the Madden-Julian Oscillation in GEOS-S2S-2, and on a seasonal scale the tropical Pacific forecasts show substantial improvement in the east and comparable skill to GEOS-S2S-1 in the central Pacific. GEOS-S2S-2 anomaly correlations of both land surface temperature and precipitation were comparable to GEOS-S2S-1, and showed substantially reduced root mean square error of surface temperature. The remaining issues described here are being addressed in the development of GEOS-S2S Version 3, and with that system GMAO will continue its tradition of maintaining a state of the art seasonal prediction system for use in evaluating the impact on seasonal and decadal forecasts of assimilating newly available satellite observations, as well as to evaluate additional sources of predictability in the earth system through the expanded coupling of the earth system model and assimilation components.

2.
Sci Rep ; 9(1): 3481, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30837570

ABSTRACT

The inter-relationship between subtropical western-central Pacific sea surface temperatures (STWCPSST), sea ice concentrations in the Beaufort Sea (SICBS), and the North Atlantic Oscillation (NAO) in summer are investigated over the period 1980-2016. It is shown that the Arctic response to the remote impact of the Pacific SST is more dominant in recent summers, leading to a frequent occurrence of the negative phase of the NAO following the STWCPSST increase. Lag-correlations of STWCPSST positive (negative) anomalies in spring with the negative (positive) NAO and SICBS loss (recovery) in summer have increased over the last two decades, reaching r = 0.4-0.5 with significance at the 5 percent level. Both observations and the atmospheric general circulation model experiments suggest that the positive STWCPSST anomaly and subsequent planetary-scale wave propagation act to increase the Arctic upper-level geopotential heights and temperatures in the following season. This response extends to Greenland, providing favorable conditions for developing the negative phase of the NAO. Connected with this atmospheric response, SIC and surface albedo decrease with an increase in the surface net shortwave flux over the Beaufort Sea. Examination of the surface energy balance (radiative and turbulent fluxes) reveals that surplus energy that can heat the surface increases over the Arctic, enhancing the SIC reduction.

3.
Sci Rep ; 8(1): 16172, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30385868

ABSTRACT

The 2017 Atlantic hurricane season was extremely active with six major hurricanes, the third most on record. The sea-surface temperatures (SSTs) over the eastern Main Development Region (EMDR), where many tropical cyclones (TCs) developed during active months of August/September, were ~0.96 °C above the 1901-2017 average (warmest on record): about ~0.42 °C from a long-term upward trend and the rest (~80%) attributed to the Atlantic Meridional Mode (AMM). The contribution to the SST from the North Atlantic Oscillation (NAO) over the EMDR was a weak warming, while that from El Niño-Southern Oscillation (ENSO) was negligible. Nevertheless, ENSO, the NAO, and the AMM all contributed to favorable wind shear conditions, while the AMM also produced enhanced atmospheric instability. Compared with the strong hurricane years of 2005/2010, the ocean heat content (OHC) during 2017 was larger across the tropics, with higher SST anomalies over the EMDR and Caribbean Sea. On the other hand, the dynamical/thermodynamical atmospheric conditions, while favorable for enhanced TC activity, were less prominent than in 2005/2010 across the tropics. The results suggest that unusually warm SST in the EMDR together with the long fetch of the resulting storms in the presence of record-breaking OHC may be key factors in driving the strong TC activity in 2017.

4.
J Clim ; 31(15): 5825-5844, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30197468

ABSTRACT

The factors impacting western U.S. winter precipitation during the 2015/16 El Niño are investigated using the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) data, and simulations with the Goddard Earth Observing System version 5 (GEOS-5) atmospheric general circulation model forced with specified sea surface temperatures (SSTs). Results reveal that the simulated response to the tropical Pacific SST associated with the 2015/16 El Niño was to produce wetter than normal conditions over much of the west coast including California - a result at odds with the negative precipitation anomalies observed over much of the Southwestern U.S. It is shown that two factors acted to partly counter the canonical ENSO response in that region. First, a potentially predictable but modest response to the unusually strong and persistent warm SST in the northeastern Pacific decreased precipitation in the Southwestern U.S. by increasing sea level pressure, driving anticyclonic circulation and atmospheric descent, and reducing moisture transport into that region. Second, large-scale unforced (by SST) components of atmospheric variability (consisting of the leading modes of unpredictable intra-ensemble variability) resembling the positive phase of the North Atlantic Oscillation and Arctic Oscillation are found to be an important contributor to the drying over the western U.S. While a statistical reconstruction of the precipitation from our simulations that account for internal atmospheric variability does much to close the gap between the ensemble mean and observed precipitation in the Southwestern U.S., some differences remain, indicating that model error is also playing a role.

5.
J Clim ; 30: 4819-4842, 2017.
Article in English | MEDLINE | ID: mdl-29962660

ABSTRACT

The 2015/2016 El Niño is analyzed using atmospheric/oceanic analysis produced using the Goddard Earth Observing System (GEOS) data assimilation systems. As well as describing the structure of the event, a theme of the work is to compare and contrast it with two other strong El Niños, in 1982/1983 and 1997/1998. These three El Niño events are included in the Modern-Era Retrospective analysis for Research and Applications (MERRA) and in the more recent MERRA-2 reanalyses. MERRA-2 allows a comparison of fields derived from the underlying GEOS model, facilitating a more detailed comparison of physical forcing mechanisms in the El Niño events. Various atmospheric/oceanic structures indicate that the 2015/2016 El Niño maximized in the Niño3.4 region, with the large region of warming over most of the Pacific and Indian Ocean. The eastern tropical Indian Ocean, Maritime Continent, and western tropical Pacific are found to be less dry in boreal winter, compared to the earlier two strong events. While the 2015/2016 El Niño had an earlier occurrence of the equatorial Pacific warming and was the strongest event on record in the central Pacific, the 1997/1998 event exhibited a more rapid growth due to stronger westerly wind bursts and Madden-Julian Oscillation during spring, making it the strongest El Niño in the eastern Pacific. Compared to 1982/1983 and 1997/1998, the 2015/2016 event has a shallower thermocline over the eastern Pacific with a weaker zonal contrast of sub-surface water temperatures along the equatorial Pacific. While the three major ENSO events have similarities, each are unique when looking at the atmosphere and ocean surface and sub-surface.

6.
J Clim ; 29(18): 6727-6749, 2016 Sep.
Article in English | MEDLINE | ID: mdl-29928071

ABSTRACT

Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally-constrained simulations with the NASA Goddard Earth Observing System version (GEOS-5) atmospheric general circulation model. The climate modes investigated are El Niño-Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic Meridional Mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well-known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic), led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Niño index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low- latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes, and not just to ENSO alone. Examination of seasonal predictability reveals that predictive skill of the three modes is limited over tropics to sub-tropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.

7.
Clim Dyn ; 47(11): 3517-3545, 2016 Dec.
Article in English | MEDLINE | ID: mdl-32742080

ABSTRACT

The second West African Monsoon Modeling and Evaluation Project Experiment (WAMME II) is designed to improve understanding of the possible roles and feedbacks of sea surface temperature (SST), land use land cover change (LULCC), and aerosols forcings in the Sahel climate system at seasonal to decadal scales. The project's strategy is to apply prescribed observationally based anomaly forcing, i.e., "idealized but realistic" forcing, in simulations by climate models. The goal is to assess these forcings' effects in producing/amplifying seasonal and decadal climate variability in the Sahel between the 1950s and the 1980s, which is selected to characterize the great drought period of the last century. This is the first multi-model experiment specifically designed to simultaneously evaluate such relative contributions. The WAMME II models have consistently demonstrated that SST forcing is a major contributor to the 20th century Sahel drought. Under the influence of the maximum possible SST forcing, the ensemble mean of WAMME II models can produce up to 60% of the precipitation difference during the period. The present paper also addresses the role of SSTs in triggering and maintaining the Sahel drought. In this regard, the consensus of WAMME II models is that both Indian and Pacific Ocean SSTs greatly contributed to the drought, with the former producing an anomalous displacement of the Intertropical Convergence Zone (ITCZ) before the WAM onset, and the latter mainly contributes to the summer WAM drought. The WAMME II models also show that the impact of LULCC forcing on the Sahel climate system is weaker than that of SST forcing, but still of first order magnitude. According to the results, under LULCC forcing the ensemble mean of WAMME II models can produces about 40% of the precipitation difference between the 1980s and the 1950s. The role of land surface processes in responding to and amplifying the drought is also identified. The results suggest that catastrophic consequences are likely to occur in the regional Sahel climate when SST anomalies in individual ocean basins and in land conditions combine synergistically to favor drought.

8.
Toxicol Res ; 25(3): 147-157, 2009 Sep.
Article in English | MEDLINE | ID: mdl-32038833

ABSTRACT

This study was conducted to obtain acute information of the oral dose toxicity of lyophilized water extract of Pinelliae Rhizoma, a dried tuber of Pinellia ternata (PR) in male and female mice. In order to calculated 50% lethal dose (LD50) and approximate lethal dose (ALD), test material was once orally administered to male and female ICR mice at dose levels of 2000, 1000, 500, 250, 125 and 0 (vehicle control) ml/kg (body weight). The mortality and changes in body weight, clinical signs, gross observation, organ weight and histopathology of principle organs were monitored 14 days after treatment with PR extract. We could not find any mortalities, clinical signs, changes in the body and organ weights, gross and histopathological findings except for dose-dependent increases in the hepatic fatty change frequencies detected in PR extract 2000 and 1000mg/kg treated in both male and female mice. The results obtained in this study suggest that LD50 and approximate LD in mice after single oral dose of PR extracts were considered over 2000 mg/kg in both and female male mice, but more than 1000mg/kg of PR extracts treatment could induce slight hepatotoxicity the fatty changes in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...