Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Toxicol Lett ; 394: 114-127, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38437907

ABSTRACT

Parkin regulates protein degradation and mitophagy in dopaminergic neurons. Deficiencies in Parkin expression or function lead to cellular stress, cell degeneration, and the death of dopaminergic neurons, which promotes Parkinson's disease. In contrast, Parkin overexpression promotes neuronal survival. Therefore, the mechanisms of Parkin upregulation are crucial to understand. We describe here the molecular mechanism of AHR-mediated Parkin regulation in human SH-SY5Y neuroblastoma cells. Specifically, we report that the human Parkin gene (PRKN) is transcriptionally upregulated by the aryl hydrocarbon receptor (AHR) through two different selective ligand-dependent pathways. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a stress-inducing AHR ligand, indirectly promotes PRKN transcription by inducing ATF4 expression via TCDD-mediated endoplasmic reticulum (ER) stress. In contrast, kynurenine, a nontoxic AHR agonist, induces PRKN transcription by promoting AHR binding to the PRKN promoter without activating ER stress. Our results demonstrate that AHR activation may be a potential pharmacological pathway to induce human Parkin, but such a strategy must carefully consider the choice of AHR ligand to avoid neurotoxic side effects.


Subject(s)
Neuroblastoma , Polychlorinated Dibenzodioxins , Humans , Receptors, Aryl Hydrocarbon/metabolism , Polychlorinated Dibenzodioxins/toxicity , Kynurenine , Ligands , Ubiquitin-Protein Ligases/genetics
2.
Article in English | MEDLINE | ID: mdl-38086972

ABSTRACT

BACKGROUND: Few epidemiologic studies have focused on the specific source of ambient air pollution and adverse health effects in early life. Here, we investigated whether air pollutants from different emission sources were associated with decreased birth anthropometry parameters and increased DNA adduct formation in mother-child pairs residing in the Mexico City Metropolitan Area (MCMA). METHODS: This cross-sectional study included 190 pregnant women recruited during their last trimester of pregnancy from two hospitals at MCMA, and a Modeling Emissions Inventory (MEI) to calculate exposure to ambient air pollutants from different emissions sources (area, point, mobile, and natural) for two geographical buffers 250 and 750 m radii around the participants households. RESULTS: Contaminants were positively correlated with umbilical cord blood (UCB) adducts, but not with maternal blood (MB) adducts. PM10 emissions (area and point sources, overall emissions), PM2.5 (point sources), volatile organic compounds (VOC), total organic compounds (TOC) from point sources were positively correlated with UCB adducts. Air pollutants emitted from natural sources were correlated with a decrease in MB and UCB adducts. PM10 and PM2.5 were correlated (p < 0.05) with a decrease in birth weight (BW), birth length (BL) and gestational age at term (GA). In multivariate analyses adjusted for potential confounders, PM10 was associated with an increase in UCB adducts. PM10 and PM2.5 from overall emissions were associated with a decrease in BW, BL and GA at term. IMPACT: Results suggested higher susceptibility of newborns compared to mothers to damage related to ambient air pollution. PMs are associated with birth anthropometry parameters and DNA damage in adjusted models, highlighting the need for more strict regulation of PM emissions.

3.
Sci Rep ; 11(1): 19980, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620977

ABSTRACT

The coronavirus disease 2019 (COVID-19) is the latest biological hazard for the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Even though numerous diagnostic tests for SARS-CoV-2 have been proposed, new diagnosis strategies are being developed, looking for less expensive methods to be used as screening. This study aimed to establish salivary vibrational modes analyzed by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy to detect COVID-19 biological fingerprints that allow the discrimination between COVID-19 and healthy patients. Clinical dates, laboratories, and saliva samples of COVID-19 patients (N = 255) and healthy persons (N = 1209) were obtained and analyzed through ATR-FTIR spectroscopy. Then, a multivariate linear regression model (MLRM) was developed. The COVID-19 patients showed low SaO2, cough, dyspnea, headache, and fever principally. C-reactive protein, lactate dehydrogenase, fibrinogen, D-dimer, and ferritin were the most important altered laboratory blood tests, which were increased. In addition, changes in amide I and immunoglobulin regions were evidenced in the FTIR spectra analysis, and the MLRM showed clear discrimination between both groups. Specific salivary vibrational modes employing ATR-FTIR spectroscopy were established; moreover, the COVID-19 biological fingerprint in saliva was characterized, allowing the COVID-19 detection using an MLRM, which could be helpful for the development of new diagnostic devices.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Saliva/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Adult , Aged , Female , Humans , Immunoglobulins/analysis , Male , Middle Aged , Oxygen/analysis , SARS-CoV-2/isolation & purification
4.
Article in English | MEDLINE | ID: mdl-34206994

ABSTRACT

(1) Background: The aim of this study was to assess associations between particulate matter (PM) exposure and natriuretic peptide concentrations in cord blood from newborns. (2) Methods: we conducted a cross-sectional study in Mexico City with 101 pregnant women from CIMIGEN Hospital. Atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) were measured in plasma from cord blood in 51 newborns by ELISA. We estimated PM exposure (PM2.5 and PM10) at first, second and third trimester of pregnancy. (3) Results: The median and interquartile range for ANP, BNP and CNP plasma concentrations were 66.71 (46.92-80.23), 98.23 (73.64-112.30) and 1129.11 (944.10-1452.02) pg/mL, respectively. PM2.5 and PM10 levels for the whole pregnancy period were 22.2 µg/m3 and 41.63 µg/m3, respectively. Employing multivariable linear regression models adjusted for maternal age, newborn sex, smoking before pregnancy, maternal occupation and newborns' length and height, we observed a 2.47 pg/mL (95%CI: -4.67, -0.27) decrease in BNP associated with PM2.5 exposure during second trimester. Adjusted for the same set of confounders, third trimester PM10 exposure was inversely associated with ANP concentrations (beta estimate: -0.90; 95% CI: -1.80, -0.03). Neither PM10 nor PM2.5 were associated with CNP at any trimester of pregnancy. (4) Conclusions: Prenatal exposure to particulate matter was associated with ANP and BNP decrease in newborns.


Subject(s)
Air Pollution , Particulate Matter , Atrial Natriuretic Factor , Cross-Sectional Studies , Female , Humans , Infant, Newborn , Maternal Exposure/adverse effects , Mexico , Natriuretic Peptides , Particulate Matter/analysis , Pregnancy
5.
Brain Res ; 1758: 147337, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33548272

ABSTRACT

Cobalt protoporphyrin (CoPP) is a potent heme oxygenase-1 inductor that produces temporary hypophagia and chronic weight loss. A complete description of this effect and the underlying mechanisms are unknown. In this work, we challenged the ability of CoPP to produce changes in rat behavior and cellular alterations in the Nucleus Accumbens that would explain those effects. We subcutaneously administered 25 µmol/kgbody weight CoPP in female rats and determined body weight, food intake, hyperactivity, and anxiety-like behavior, as well as the number of neurons and glial cells in the Nucleus Accumbens. CoPP significantly reduced food intake, water consumption, and body weight. Behavioral tests showed that anxiety-like behaviors and locomotor activity were not modified five days after the administration of CoPP. We also found a reduced number of neurons in the Nucleus Accumbens Shell. The above results could be relevant to diseases like anorexia, so it is necessary to deepen the study about the molecular mechanisms involved in reducing the food intake and weight loss elicited by CoPP.


Subject(s)
Body Weight/drug effects , Eating/drug effects , Neurons/drug effects , Nucleus Accumbens/drug effects , Protoporphyrins/pharmacology , Animals , Female , Rats , Rats, Wistar
6.
Toxics ; 8(3)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751182

ABSTRACT

Some studies have shown that silicon dioxide nanoparticles (SiO2-NPs) can reach different regions of the brain and cause toxicity; however, the consequences of SiO2-NPs exposure on the diverse brain cell lineages is limited. We aimed to investigate the neurotoxic effects of SiO2-NP (0-100 µg/mL) on rat astrocyte-rich cultures or neuron-rich cultures using scanning electron microscopy, Attenuated Total Reflection-Fourier Transform Infrared spectroscopy (ATR-FTIR), FTIR microspectroscopy mapping (IQ mapping), and cell viability tests. SiO2-NPs were amorphous particles and aggregated in saline and culture media. Both astrocytes and neurons treated with SiO2-NPs showed alterations in cell morphology and changes in the IR spectral regions corresponding to nucleic acids, proteins, and lipids. The analysis by the second derivative revealed a significant decrease in the signal of the amide I (α-helix, parallel ß-strand, and random coil) at the concentration of 10 µg/mL in astrocytes but not in neurons. IQ mapping confirmed changes in nucleic acids, proteins, and lipids in astrocytes; cell death was higher in astrocytes than in neurons (10-100 µg/mL). We conclude that astrocytes were more vulnerable than neurons to SiO2-NPs toxicity. Therefore, the evaluation of human exposure to SiO2-NPs and possible neurotoxic effects must be followed up.

7.
Toxicology ; 442: 152545, 2020 09.
Article in English | MEDLINE | ID: mdl-32755642

ABSTRACT

The Organisation for Economic Co-operation and Development has listed thirteen engineered nanomaterials (ENM) in order to investigate their toxicity on human health. Silicon dioxide (SiO2) and titanium dioxide (TiO2) are included on that list and we added indium tin oxide (ITO) nanoparticles (NPs) to our study, which is not listed on OECD suggested ENM to be investigated, however ITO NPs has a high potential of industrial production. We evaluate the physicochemical properties of SiO2 NPs (10-20 nm), TiO2 nanofibers (NFs; 3 µm length) and ITO NPs (<50 nm) and the impact of protein-corona formation on cell internalization. Then, we evaluated the toxicity of uncoated ENM on human lung epithelial cells exposed to 10 and 50 µg/cm2 for 24 h. TiO2 NFs showed the highest capability to adsorb proteins onto the particle surface followed by SiO2 NPs and ITO NPs after acellular incubation with fetal bovine serum. The protein adsorption had no impact on Alizarin Red S conjugation, intrinsic properties for reactive oxygen (ROS) formation or cell uptake for all types of ENM. Moreover, TiO2 NFs induced highest cell alterations in human lung epithelial cells exposed to 10 and 50 µg/cm2 while ITO NPs induced moderated cytotoxicity and SiO2 NPs caused even lower cytotoxicity under the same conditions. DNA, proteins and lipids were mainly affected by TiO2 NFs followed by SiO2 NPs with toxic effects in protein and lipids while limited variations were detected after exposure to ITO NPs on spectra analyzed by Fourier Transform Infrared Spectroscopy.


Subject(s)
Nanostructures/chemistry , Nanostructures/toxicity , Protein Corona/metabolism , Reactive Oxygen Species/metabolism , A549 Cells , Cell Size , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Epithelial Cells/metabolism , Humans , Lipid Metabolism/drug effects , Respiratory Mucosa/cytology , Respiratory Mucosa/metabolism , Silicon Dioxide/chemistry , Silicon Dioxide/metabolism , Silicon Dioxide/toxicity , Surface Properties , Titanium/chemistry , Titanium/metabolism , Titanium/toxicity , Wound Healing/drug effects
8.
Front Cell Neurosci ; 13: 325, 2019.
Article in English | MEDLINE | ID: mdl-31396052

ABSTRACT

Glutathione (GSH) is the most abundant intracellular antioxidant. GSH depletion leads to oxidative stress and neuronal damage in the central nervous system (CNS). In mice, the acute systemic inhibition of GSH synthesis by L-buthionine-S-R-sulfoximine (BSO) triggers a protective response and a subsequent increase in the CNS GSH content. This response might be modulated by a peripheral increment of circulating nerve growth factor (NGF). NGF is an important activator of antioxidant pathways mediated by tropomyosin-related kinase receptor A (TrkA). Here, we report that peripheral administration of BSO increased plasma NGF levels. Additionally, BSO increased NGF levels and activated the NGF/TrkA/Akt pathway in striatal neurons. Moreover, the response in the striatum included an increased transcription of nrf2, gclm, lat1, eaac1, and xct, all of which are involved in antioxidant responses, and L-cys/L-cys2 and glutamate transporters. Using antibody against NGF confirmed that peripheral NGF activated the NGF/TrkA/Akt/Nrf2 pathway in the striatum and subsequently increased the transcription of gclm, nrf2, lat1, eaac1, and xct. These results provide evidence that the reduction of peripheral GSH pools increases peripheral NGF circulation that orchestrates a neuroprotective response in the CNS, at least in the striatum, through the NGF/TrkA/Akt/Nrf2 pathway.

9.
Ann Glob Health ; 84(2): 257-273, 2018 07 27.
Article in English | MEDLINE | ID: mdl-30873793

ABSTRACT

BACKGROUND: Mexico is included in the list of countries with concurrent arsenic and fluoride contamination in drinking water. Most of the studies have been carried out in the adult population and very few in the child population. Urinary arsenic and urinary fluoride levels have been accepted as good biomarkers of exposure dose. The Biomonitoring Equivalents (BE) values are useful tools for health assessment using human biomonitoring data in relation to the exposure guidance values, but BE information for children is limited. METHODS: We conducted a systematic review of the reported levels of arsenic and fluoride in drinking water, urinary quantification of speciated arsenic (inorganic arsenic and its methylated metabolites), and urinary fluoride levels in child populations. For BE values, urinary arsenic and fluoride concentrations reported in Mexican child populations were revised discussing the influence of factors such as diet, use of dental products, sex, and metabolism. RESULTS: Approximately 0.5 and 6 million Mexican children up to 14 years of age drink water with arsenic levels over 10 µg/L and fluoride over 1.5 mg/L, respectively. Moreover, 40% of localities with arsenic levels higher than 10 µg/L also present concurrent fluoride exposure higher than 1.5 mgF/L. BE values based in urinary arsenic of 15 µg/L and urinary fluoride of 1.2 mg/L for the environmentally exposed child population are suggested. CONCLUSIONS: An actual risk map of Mexican children exposed to high levels of arsenic, fluoride, and both arsenic and fluoride in drinking water was generated. Mexican normativity for maximum contaminant level for arsenic and fluoride in drinking water should be adjusted and enforced to preserve health. BE should be used in child populations to investigate exposure.


Subject(s)
Arsenic/urine , Drinking Water , Fluorides/urine , Water Quality/standards , Child , Drinking Water/adverse effects , Drinking Water/analysis , Drinking Water/chemistry , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Exposure/prevention & control , Environmental Monitoring/methods , Environmental Monitoring/standards , Humans , Mexico/epidemiology , Risk Assessment , Water Pollutants, Chemical/urine
11.
J Biochem Mol Toxicol ; 31(2)2017 Feb.
Article in English | MEDLINE | ID: mdl-27589053

ABSTRACT

Quinolinic acid (QA) triggers striatal neuronal death by an excitotoxic cascade that involves oxidative stress, which in turns is tightly linked to mitochondria. Mitochondrial dysfunction is a molecular feature described in several brain pathologies. In this work, we determined whether the sulforaphane-neuroprotective effect in the rodent experimental model of Huntington's disease induced by QA is associated with mitochondrial function preservation. We found that QA impaired mitochondrial function within 24 h post-lesion. Sulforaphane effectively disrupted the mitochondrial dysfunction by preventing the decrease in respiratory control ratio, transmembrane potential, ability to synthetize ATP, and the activity of mitochondrial complexes I, II, and IV.


Subject(s)
Corpus Striatum/drug effects , Isothiocyanates/toxicity , Mitochondria/drug effects , Quinolinic Acid/pharmacology , Adenosine Triphosphate/biosynthesis , Animals , Male , Membrane Potential, Mitochondrial/drug effects , Rats , Rats, Wistar , Sulfoxides
12.
J Toxicol ; 2016: 4763434, 2016.
Article in English | MEDLINE | ID: mdl-27375740

ABSTRACT

Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.

13.
Toxicology ; 304: 109-19, 2013 02 08.
Article in English | MEDLINE | ID: mdl-23274087

ABSTRACT

6-Hydroxydopamine (6-OHDA) is a neurotoxin that generates an experimental model of Parkinson's disease in rodents and is commonly employed to induce a lesion in dopaminergic pathways. The characterization of those molecular mechanisms linked to 6-OHDA-induced early toxicity is needed to better understand the cellular events further leading to neurodegeneration. The present work explored how 6-OHDA triggers early downstream signaling pathways that activate neurotoxicity in the rat striatum. Mitochondrial function, caspases-dependent apoptosis, kinases signaling (Akt, ERK 1/2, SAP/JNK and p38) and crosstalk between nuclear factor kappa B (NF-κB) and nuclear factor-erythroid-2-related factor 2 (Nrf2) were evaluated at early times post-lesion. We found that 6-OHDA initiates cell damage via mitochondrial complex I inhibition, cytochrome c and apoptosis-inducing factor (AIF) release, as well as activation of caspases 9 and 3 to induce apoptosis, kinase signaling modulation and NF-κB-mediated inflammatory responses, accompanied by inhibition of antioxidant systems regulated by the Nrf2 pathway. Our results suggest that kinases SAP/JNK and p38 up-regulation may play a role in the early stages of 6-OHDA toxicity to trigger intrinsic pathways for apoptosis and enhanced NF-κB activation. In turn, these cellular events inhibit the activation of cytoprotective mechanisms, thereby leading to a condition of general damage.


Subject(s)
Apoptosis/drug effects , Mitochondria/drug effects , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidopamine/toxicity , Animals , Apoptosis Inducing Factor/metabolism , Caspase 3/metabolism , Caspase 9/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Cytochromes c/metabolism , Inflammation/chemically induced , Inflammation/pathology , JNK Mitogen-Activated Protein Kinases/genetics , Male , Mitochondria/pathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Rats , Rats, Wistar , Signal Transduction/drug effects , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/genetics
14.
Neurotoxicology ; 34: 82-94, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23123945

ABSTRACT

Atrazine (ATR) is used as a pre- and post-emergent herbicide; although banned in several countries of the European Community, it is still used extensively around the world. A recent study in rats has shown that chronic, daily exposure to 10 mg ATR/kg BW causes hyperactivity, disrupts motor coordination and learning of behavioral tasks, and decreases dopamine levels in the brain. In order to evaluate the short-term effect of ATR exposure on locomotor activity, monoamine markers, and antioxidants, adult male Sprague-Dawley rats received six IP injections of 100 mg ATR/kg BW or vehicle over two weeks. After every ATR injection we found hypoactivity that lasted up to five days, and it was accompanied by reductions in levels of striatal DA, DOPAC, and HVA without any alteration in the striatal expression of the mRNAs for Mn-SOD, Trx-1, DAR-D(1), or DAR-D(2). In contrast, in the nucleus accumbens no changes in monoamine markers were observed, and a down-regulation of Trx-1 expression was detected shortly after the ATR treatment. Moreover, in the ventral midbrain, we found that ATR induced a down-regulation of mRNA for Th and DAT, but it increased VMAT2 mRNA expression. Decreases of monoamine levels and of locomotor activity disappeared three months after ATR treatment; however, an amphetamine challenge (1 mg/kg) given two months after the ATR treatment resulted in a significant stimulation in the exposed group, revealing hidden effects of ATR on dopaminergic systems. These results indicate that ATR exposure differentially modifies the dopaminergic systems, and these modifications may underlie the behavioral changes observed.


Subject(s)
Atrazine/toxicity , Basal Ganglia/drug effects , Behavior, Animal/drug effects , Dopaminergic Neurons/drug effects , Herbicides/toxicity , Motor Activity/drug effects , Substantia Nigra/drug effects , 3,4-Dihydroxyphenylacetic Acid/metabolism , Albinism/genetics , Animals , Atrazine/administration & dosage , Basal Ganglia/metabolism , Basal Ganglia/physiopathology , Dopamine/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Dopaminergic Neurons/metabolism , Drug Administration Schedule , Exploratory Behavior/drug effects , Herbicides/administration & dosage , Homovanillic Acid/metabolism , Injections, Intraperitoneal , Male , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Substantia Nigra/metabolism , Substantia Nigra/physiopathology , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism , Time Factors , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism , Vesicular Monoamine Transport Proteins/genetics , Vesicular Monoamine Transport Proteins/metabolism
15.
J Neurosci Methods ; 209(1): 235-40, 2012 Jul 30.
Article in English | MEDLINE | ID: mdl-22732213

ABSTRACT

Plasmid retention after long-term transplantation has been one of the major technical limitations for transplantation studies. This study describes the use of a modified protocol of Hirt and a SYBR Green-based quantitative real-time PCR (qPCR) to recover and quantify a vector containing a specific transgene in transfected cells after brain transplantation. We compared various methods for sample processing and recovery of extrachromosomal DNA suitable for qPCR. The modified protocol of Hirt was the most reliable for optimal plasmid recovery from transplanted tissue with minimal loss of plasmid DNA compared to a commercial kit or TRIzol(®) protocols. The PCR protocol for plasmid and transgene detection included the design of two highly specific primer sets to detect the sequence for the human glutamate decarboxylase 1 (hGAD(67)) transgene by SYBR Green-based qPCR, and to confirm the presence of vector pREP10 hGAD(67) by end-point PCR. We used a standard curve constructed from serial dilutions of pure plasmid pREP10 hGAD(67) as reference in qPCR experiments to determine the number of plasmid copies recovered from cultured cells and tissue samples after Hirt extraction. Then, plasmid permanence was evaluated in transplanted tissues after different time intervals, and plasmid loss in the tissue of interest was found to be time dependent. In this study we describe an easy, highly specific, low-cost, and reliable method for plasmid recovery and quantification of a transgene of interest in long-term brain transplantation studies; use of this method may be extended to other transplantation models.


Subject(s)
Genetic Vectors/isolation & purification , Hippocampus/surgery , Plasmids/isolation & purification , Transgenes , Animals , Base Sequence , Genetic Therapy/methods , Glutamate Decarboxylase/genetics , Humans , Male , Molecular Sequence Data , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Transfection
16.
Cent Nerv Syst Agents Med Chem ; 10(4): 287-97, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20868358

ABSTRACT

The glutathione system includes reduced (GSH) and oxidized (GSSG) forms of glutathione; the enzymes required for its synthesis and recycling, such as gamma-glutamate cysteine ligase (γ-GCL), glutathione synthetase (GS), glutathione reductase (GSR) and gamma glutamyl transpeptidase (γ-GGT); and the enzymes required for its use in metabolism and in mechanisms of defense against free radical-induced oxidative damage, such as glutathione s-transferases (GSTs) and glutathione peroxidases (GPxs). Glutathione functions in the central nervous system (CNS) include maintenance of neurotransmitters, membrane protection, detoxification, metabolic regulation, and modulation of signal transduction. A common pathological hallmark in various neurodegenerative disorders, such as amyotrophic lateral sclerosis and Alzheimer's and Parkinson's diseases is the increase in oxidative stress and the failure of antioxidant systems, such as the decrease in the GSH content. The administration of exogenous neurohormone melatonin at pharmacological doses has been shown not only to be an effective scavenger of reactive oxygen and nitrogen species but also to enhance the levels of GSH and the expression and activities of the GSH-related enzymes including γ-GCL, GPxs, and GSR. The exact mechanisms by which melatonin regulates the glutathione system are not fully understood. The main purpose of this short review is to discuss evidence relating to the potential common modulation signals between the glutathione system and melatonin in the CNS. The potential regulatory mechanisms and interactions between neurons and non-neuronal cells are also discussed.


Subject(s)
Central Nervous System/physiology , Glutathione/physiology , Melatonin/physiology , Animals , Antioxidants/pharmacology , Astrocytes/physiology , Glutathione Peroxidase/metabolism , Humans , Melatonin/pharmacology , Neurons/physiology
17.
Neurotoxicol Teratol ; 32(6): 640-7, 2010.
Article in English | MEDLINE | ID: mdl-20699118

ABSTRACT

Several studies have associated chronic arsenicism with decreases in IQ and sensory and motor alterations in humans. Likewise, studies of rodents exposed to inorganic arsenic ((i)As) have found changes in locomotor activity, brain neurochemistry, behavioral tasks, oxidative stress, and in sensory and motor nerves. In the current study, male Sprague-Dawley rats were exposed to environmentally relevant doses of (i)As (0.05, 0.5 mg (i)As/L) and to a high dose (50 mg (i)As/L) in drinking water for one year. Hypoactivity and increases in the striatal dopamine content were found in the group treated with 50 mg (i)As/L. Exposure to 0.5 and 50 mg (i)As/L increased the total brain content of As. Furthermore, (i)As exposure produced a dose-dependent up-regulation of mRNA for Mn-SOD and Trx-1 and a down-regulation of DAR-D2 mRNA levels in the nucleus accumbens. DAR-D1 and Nrf2 mRNA expression were down-regulated in nucleus accumbens in the group exposed to 50 mg (i)As/L. Trx-1 mRNA levels were up-regulated in the cortex in an (i)As dose-dependent manner, while DAR-D1 mRNA expression was increased in striatum in the 0.5 mg (i)As/L group. These results show that chronic exposure to low levels of arsenic causes subtle but region-specific changes in the nervous system, especially in antioxidant systems and dopaminergic elements. These changes became behaviorally evident only in the group exposed to 50 mg (i)As/L.


Subject(s)
Antioxidants/metabolism , Arsenites/toxicity , Brain/drug effects , Motor Activity/drug effects , Receptors, Dopamine/genetics , Sodium Compounds/toxicity , Water Pollutants, Chemical/toxicity , Animals , Arsenites/pharmacokinetics , Brain/enzymology , Brain/metabolism , Dose-Response Relationship, Drug , Male , NF-E2-Related Factor 2/genetics , RNA/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Serotonin/genetics , Sodium Compounds/pharmacokinetics , Superoxide Dismutase/genetics , Thioredoxins/genetics , Time Factors , Tissue Distribution , Water Pollutants, Chemical/pharmacokinetics
18.
Mutat Res ; 674(1-2): 137-47, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-18955158

ABSTRACT

In aerobic organisms, oxygen is essential for efficient energy production but paradoxically, produces chronic toxic stress in cells. Diverse protective systems must exist to enable adaptation to oxidative environments. Oxidative stress (OS) results when production of reactive oxidative species (ROS) exceeds the capacity of cellular antioxidant defenses to remove these toxic species. Epidemiological and clinical studies have linked environmental factors such as diet and lifestyle to cancer, diabetes, atherosclerosis, and neurodegenerative disorders. All of these conditions, as well as the aging process, are associated with OS due to elevation of ROS or insufficient ROS detoxification. Many environmental pollutants engage signaling pathways that are activated in response to OS. The same sequences of events are also associated with the etiology and early pathology of many chronic diseases. Investigations of oxidative responses in different in vivo models suggest that, in complex organisms such as mammals, organs and tissues contain distinct antioxidant systems, and this may form the basis for differential susceptibility to environmental toxic agents Thus, understanding the pathways leading to the induction of antioxidant responses will enable development of strategies to protect against oxidative damage. We shall review evidence of organ-specific antioxidant responses elicited by environmental pollutants in humans and animal models.


Subject(s)
Antioxidants/physiology , Cytoprotection/physiology , Environment , Enzymes/physiology , Oxidative Stress/physiology , Animals , Antioxidants/metabolism , Cytoprotection/genetics , Drug-Related Side Effects and Adverse Reactions , Enzymes/genetics , Enzymes/metabolism , Humans , Metals/toxicity , Models, Biological , Oxidative Stress/genetics , Pesticides/toxicity , Radiation, Ionizing , Reactive Oxygen Species/metabolism , Ultraviolet Rays
19.
Free Radic Biol Med ; 43(9): 1335-47, 2007 Nov 01.
Article in English | MEDLINE | ID: mdl-17893047

ABSTRACT

Because mitogen-activated protein kinases (MAPK) are downstream effectors of antioxidant responses, changes in GSH levels in an organism might induce organ-specific responses. To test our hypothesis, mice were treated intraperitoneally with L-buthionine-S-R-sulfoximine (BSO) to inhibit GSH synthesis. A time-related GSH depletion in the liver and kidney correlated with p38(MAPK) phosphorylation and induction of thioredoxin 1 (Tx-1) transcription. This positive regulation was associated with nuclear translocation of NF-kappaB and ATF-2 and c-Jun phosphorylation in the liver, but only c-Jun phosphorylation in the kidney. Increased levels of GSH were observed in the brain together with extracellular regulated kinase 2 (ERK2) activation, Nrf2 nuclear accumulation, and increases in transcription of Nrf2, xCT, gamma-glutamylcysteine synthetase (gammaGCSr), and Tx-1. Pretreatment with MAPK inhibitors SB203580 and U0126, or addition of the exogenous thiol N-acetylcysteine, abrogated both p38(MAPK) and ERK2 activation as well as downstream effects on gene expression. No effect on gammaGCSr was observed. These results indicate that in mice, GSH depletion is associated with p38(MAPK) phosphorylation in the liver and kidney and with ERK2 activation in the brain, in what could be considered part of the brain's protective response to thiol depletion.


Subject(s)
Brain/metabolism , Glutathione/deficiency , MAP Kinase Signaling System/physiology , Mitogen-Activated Protein Kinases/metabolism , Acetylcysteine/pharmacology , Activating Transcription Factor 2/genetics , Activating Transcription Factor 2/metabolism , Animals , Antioxidants/metabolism , Brain/enzymology , Butadienes/pharmacology , Buthionine Sulfoximine/pharmacology , Glutathione/metabolism , Imidazoles/pharmacology , Kidney/enzymology , Kidney/metabolism , Liver/enzymology , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinases/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Nitriles/pharmacology , Oxidative Stress , Proto-Oncogene Proteins c-jun/genetics , Pyridines/pharmacology , Reactive Oxygen Species , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...