Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Molecules ; 28(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764372

ABSTRACT

Guava, pitanga and acerola are known for their vitamin content and high levels of bioactive compounds. Thus, the preparation of combinations of these fruits comprises a blend with high nutraceutical potential, yielding a strong and attractive pigmentation material. In this study, the influence of different proportions of maltodextrin on the lyophilization of a blend of guava, acerola and pitanga was evaluated considering not only the physicochemical, physical and colorimetric parameters but also the bioactive compounds in the obtained powders. The blend was formulated from the mixture and homogenization of the three pulps in a ratio of 1:1:1 (m/m), then maltodextrin was added to the blend, resulting in four formulations: blend without adjuvant (BL0), and the others containing 10% (BL10), 20% (BL20) and 30% (BL30) maltodextrin. The formulations were lyophilized and disintegrated to obtain powders. The powders were characterized in terms of water content, water activity, pH, total titratable acidity, ash, total and reducing sugars, ascorbic acid, total phenolic content, flavonoids, anthocyanins, carotenoids, lycopene, color parameters, Hausner factor, Carr index, angle of repose, solubility, wettability and porosity. All evaluated powders showed high levels of bioactive compounds and the increase in maltodextrin concentration promoted positive effects, such as reductions in water content, water activity and porosity and improved flow, cohesiveness and solubility characteristics.

2.
Foods ; 12(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37444246

ABSTRACT

Foam mat drying is a widely used technique for liquid products because it has a number of advantages; however, for an efficient process, the choice of additives and temperatures is extremely important. The objective of this study was to evaluate the effect of additives and drying temperatures on the powders obtained from the blend of tropical red fruits, such as acerola, guava, and pitanga. The foam formulations were prepared by mixing the pulps of the three fruits in equal proportions (1:1:1), all added with 6% albumin and 1% stabilizing agent: E1, gum Arabic; E2, guar gum; E3, gelatin. The combinations were subjected to beating, and subsequently, they were dried in an oven with forced air circulation at four temperatures (50 to 80 °C), with a mat thickness of 0.5 cm. The obtained powders showed low levels of water and water activity and high levels of bioactive compounds, colors with a predominance of yellow, intermediate cohesiveness, poor fluidity, and solubility above 50%. The best temperature for obtaining the powders was 60 °C. The formulation that produced the best results for the production of the tropical red fruit blend powder was the combination of albumin and gelatin.

3.
Foods ; 12(11)2023 May 24.
Article in English | MEDLINE | ID: mdl-37297351

ABSTRACT

Pepper (Capsicum spp.) is among the oldest and most cultivated crops on the planet. Its fruits are widely used as natural condiments in the food industry for their color, flavor, and pungency properties. Peppers have abundant production; on the other hand, their fruits are perishable, deteriorating within a few days after harvesting. Therefore, they need adequate conservation methods to increase their useful life. This study aimed to mathematically model the drying kinetics of smelling peppers (Capsicum chinense) and pout peppers (Capsicum chinense Jacq.) to obtain the thermodynamic properties involved in the process and to determine the influence of drying on the proximal composition of these peppers. Whole peppers, containing the seeds, were dried in an oven with forced air circulation, at temperatures of 50, 60, 70, and 80 °C, with an air speed of 1.0 m/s. Ten models were adjusted to the experimental data, but the Midilli model was the one that provided the best values of coefficient of determination and lowest values of the mean squared deviation and chi-square value in most of the temperatures under study. The effective diffusivities were well represented by an Arrhenius equation, appearing in the order of 10-10 m2·s-1 for both materials under study, since the activation energy of the smelling pepper was 31.01 kJ·mol-1 and was 30.11 kJ·mol-1 in the pout pepper, respectively. Thermodynamic properties in both processes of drying the peppers pointed to a non-spontaneous process, with positive values of enthalpy and Gibbs free energy and negative values of entropy. Regarding the influence of drying on the proximal composition, it was observed that, with the increase in temperature, there was a decrease in the water content and the concentration of macronutrients (lipids, proteins, and carbohydrates), providing an increase in the energy value. The powders obtained in the study were presented as an alternative for the technological and industrial use of peppers, favoring obtaining a new condiment, rich in bioactives, providing the market with a new option of powdered product that can be consumed directly and even adopted by the industry as a raw material in the preparation of mixed seasonings and in the formulation of various food products.

4.
Molecules ; 28(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375421

ABSTRACT

The combination of fruit pulps from different species, in addition to multiplying the offer of flavors, aromas and textures, favors the nutritional spectrum and the diversity of bioactive principles. The objective was to evaluate and compare the physicochemical characteristics, bioactive compounds, profile of phenolic compounds and in vitro antioxidant activity of pulps of three species of tropical red fruits (acerola, guava and pitanga) and of the blend produced from the combination. The pulps showed significant values of bioactive compounds, with emphasis on acerola, which had the highest levels in all parameters, except for lycopene, with the highest content in pitanga pulp. Nineteen phenolic compounds were identified, being phenolic acids, flavanols, anthocyanin and stilbene; of these, eighteen were quantified in acerola, nine in guava, twelve in pitanga and fourteen in the blend. The blend combined positive characteristics conferred by the individual pulps, with low pH favorable for conservation, high levels of total soluble solids and sugars, greater diversity of phenolic compounds and antioxidant activity close to that of acerola pulp. Pearson's correlation between antioxidant activity and ascorbic acid content, total phenolic compounds, flavonoids, anthocyanins and carotenoids for the samples were positive, indicating their use as a source of bioactive compounds.


Subject(s)
Eugenia , Psidium , Antioxidants/chemistry , Fruit/chemistry , Anthocyanins/analysis , Ascorbic Acid/analysis , Phenols/chemistry , Psidium/chemistry
5.
Foods ; 12(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37238901

ABSTRACT

The aim of this study was to determine the thermophysical properties and process parameters of cylindrical carrot pieces during their chilling. For this, the temperature of the central point of the product, initially at 19.9 °C, was recorded during chilling under natural convection, with the refrigerator air temperature maintained at 3.5 °C. A solver was created for the two-dimensional analytical solution of the heat conduction equation in cylindrical coordinates. This solver and the experimental data set were coupled to the LS Optimizer (V. 7.2) optimization software to simultaneously determine not only the values of thermal diffusivity (α) and heat transfer coefficient (hH), but also the uncertainties of these values. These values were consistent with those reported in the literature for carrots; in this study, the precision of these values and the confidence level of the results (95.4%) were also presented. Furthermore, the Biot numbers were greater than 0.1 and less than 40, indicating that the mathematical model presented in this study can be used to simultaneously estimate α and hH. A simulation of the chilling kinetics using the values obtained for α and hH showed good agreement with the experimental results, with a root mean square error RMSE = 9.651 × 10-3 and a chi-square χ2 = 4.378 × 10-3.

6.
Molecules ; 28(8)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37110783

ABSTRACT

Among the vegetables that stand out for their high concentration of anthocyanins, red cabbage appears as one of the most-used sources of these pigments in food production and it is considered a suitable raw material for the extraction of natural dye. Therefore, the objective was to carry out the production of natural extracts from red cabbage, under different conditions, varying the solvent, type of pre-treatment, pH range, and processing temperature during the concentration of the extracts. The anthocyanins were extracted from red cabbage using the following solvents: distilled water, 25% ethyl alcohol, and 70% ethyl alcohol. The raw material was divided into two groups, the first was subjected to a drying pre-treatment at 70 °C for 1 h and for the second group, the extraction was performed with the raw material in natura. Two pH ranges of 4.0 and 6.0 and extraction temperatures of 25 °C and 75 °C were used in the extracts, resulting in 24 formulations. The extracts obtained were analyzed for colorimetric parameters and anthocyanins. The results of anthocyanins show that the methodology that uses 25% alcohol, pH 4.0, and processing temperature of 25 °C produces a reddish extract and better results in the extraction, presenting average values of 191.37 mg/100 g of anthocyanins, being 74% higher compared to the highest values obtained in the other extracts where the same raw material was used and the solvents differed.


Subject(s)
Anthocyanins , Brassica , Solvents , Ethanol , Plant Extracts
7.
Polymers (Basel) ; 15(6)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36987150

ABSTRACT

For the purpose of renewable materials applications, Curauá fiber treated with 5% sodium hydroxide was added to high-density biopolyethylene, using an entirely Brazilian raw material of sugarcane ethanol. Polyethylene grafted with maleic anhydride was used as a compatibilizer. With the addition of curauá fiber, the crystallinity was reduced, possibly due to interactions in the crystalline matrix. A positive thermal resistance effect was observed for the maximum degradation temperatures of the biocomposites. When curauá fiber was added (5% by weight), the morphology showed interfacial adhesion, greater energy storage and damping capacity. Although curauá fiber additions did not affect the yield strength of high-density bio polyethylene, its fracture toughness improved. With the addition of curauá fiber (5% by weight), the fracture strain was greatly reduced to about 52%, the impact strength was also reduced, suggesting a reinforcing effect. Concomitantly, the modulus and the maximum bending stress, as well as the Shore D hardness of the curauá fiber biocomposites (at 3 and 5% by weight), were improved. Two important aspects of product viability were achieved. First, there was no change in processability and, second, with the addition of small amounts of curauá fiber, there was a gain in the specific properties of the biopolymer. The resulting synergies can help ensure more sustainable and environmentally friendly manufacturing of automotive products.

8.
Foods ; 10(4)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917616

ABSTRACT

The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10-6 m2/s, 2.9285 to 12.754 × 10-9 m2/s and 1.5393 × 10-8 to 12.4270 × 10-6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50-80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.

9.
Foods ; 10(1)2020 Dec 23.
Article in English | MEDLINE | ID: mdl-33374864

ABSTRACT

It is well known that intake of probiotic brings health benefits. Lactic bacteria with probiotic potential have aroused the interest of the industry in developing food products that incorporate such benefits. However, incorporating probiotic bacteria into food is a challenge for the industry, given the sensitivity of probiotic cultures to process conditions. Therefore, the objective of this study is to evaluate gelatin- and inulin-based filmogenic solutions as a potential vehicle for incorporating probiotics into food products and to model the fermentation kinetics. L. salivarius (Lactobacillus salivarius) growth in filmogenic solutions was analyzed under the influence of a variety gelatin concentrations (1.0-3.0%) and inulin concentrations (4.0-6.0%) and fermented under the effect of different temperatures (25-45 °C). A full 23 factorial plan with three replicates at the central point was used to optimize the process. The impacts of process conditions on cell development are fundamental to optimize the process and make it applicable by the industry. The present study showed that the optimal conditions for the development of probiotic cells in filmogenic solutions are a combination of 1.0% gelatin with 4.0% inulin and fermentation temperature of 45 °C. It was observed that the maximum cell growth occurred in an estimated time of about 4 h of fermentation. L. salivarius cell production and substrate consumption during the fermentation of the filmogenic solution were well simulated by a model proposed in this article, with coefficients of determination of 0.981 (cell growth) and 0.991 (substrate consumption).

10.
Polymers (Basel) ; 11(11)2019 Nov 09.
Article in English | MEDLINE | ID: mdl-31717491

ABSTRACT

This work aims to study numerically the moisture absorption in polymer composite reinforced with vegetable fibers using the Langmuir model which considers the existence of free and entrapped water molecules inside the material. A three-dimensional and transient modeling for describing the water absorption process inside the composite and its numerical solution via finite volume method were presented and discussed. Application has been made for polymer composites reinforced with sisal fiber. Emphasis was given to the effect of the layer thickness of fluid close to the wall of the composite in the progress of water migration. Results of the free and entrapped solute (water) concentration, local moisture content and average moisture content, at different times of process, and inside the composite were presented and analyzed. It was verified that concentration gradients of the molecules (free and entrapped) are higher in the material surface, at any time of the process, and concentration of free solute is greater than the concentration of entrapped solute. It was verified that the water layer thickness surrounding the composite strongly affects the moisture absorption rate.

11.
Materials (Basel) ; 12(10)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100883

ABSTRACT

The drying process is a step of ceramic brick production which requires the control of process variables to provide a final product with a porous uniform structure, reducing superficial and volumetric defects and production costs. Computational fluid dynamics (CFD) is an important tool in this process control, predicting the drying physical phenomenon and providing data that improve the industrial efficiency production. Furthermore, research involving CFD brick drying has neglected the effects of oven parameters, limiting the analysis only to the bricks. In this sense, the aim of this work is to numerically study the hot air-drying process of an industrial hollow ceramic brick in an oven at 70 °C. The results of the water mass and temperature distributions inside the brick, as well as moisture, temperature, velocity and pressure fields of the oven drying air at different process times are shown, analyzed and compared with experimental data, presenting a good agreement.

SELECTION OF CITATIONS
SEARCH DETAIL
...