Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 620(7974): 643-650, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37437602

ABSTRACT

In addition to its canonical function of protection from pathogens, the immune system can also alter behaviour1,2. The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Here, using mouse models of food allergy, we show that allergic sensitization drives antigen-specific avoidance behaviour. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus and central amygdala. Allergen avoidance requires immunoglobulin E (IgE) antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote avoidance requires cysteinyl leukotrienes and growth and differentiation factor 15. Finally, a comparison of C57BL/6 and BALB/c mouse strains revealed a strong effect of the genetic background on the avoidance behaviour. These findings thus point to antigen-specific behavioural modifications that probably evolved to promote niche selection to avoid unfavourable environments.


Subject(s)
Allergens , Avoidance Learning , Food Hypersensitivity , Animals , Mice , Allergens/immunology , Avoidance Learning/physiology , Central Amygdaloid Nucleus/physiology , Disease Models, Animal , Food Hypersensitivity/genetics , Food Hypersensitivity/immunology , Immunoglobulin E/immunology , Intestines/immunology , Mast Cells/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Parabrachial Nucleus/physiology , Solitary Nucleus/physiology
2.
bioRxiv ; 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36712030

ABSTRACT

In addition to its canonical function in protecting from pathogens, the immune system can also promote behavioural alterations 1â€"3 . The scope and mechanisms of behavioural modifications by the immune system are not yet well understood. Using a mouse food allergy model, here we show that allergic sensitization drives antigen-specific behavioural aversion. Allergen ingestion activates brain areas involved in the response to aversive stimuli, including the nucleus of tractus solitarius, parabrachial nucleus, and central amygdala. Food aversion requires IgE antibodies and mast cells but precedes the development of gut allergic inflammation. The ability of allergen-specific IgE and mast cells to promote aversion requires leukotrienes and growth and differentiation factor 15 (GDF15). In addition to allergen-induced aversion, we find that lipopolysaccharide-induced inflammation also resulted in IgE-dependent aversive behaviour. These findings thus point to antigen-specific behavioural modifications that likely evolved to promote niche selection to avoid unfavourable environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...