Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 206: 111934, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34182428

ABSTRACT

Since patients suffer pain in the post-surgery of bone repair interventions, bioactive glass/hydrogel drug delivery systems containing local anesthetics, such as ropivacaine, could improve patient life quality by combining bone regeneration with anesthetics. However, poloxamer-based hydrogel properties are sensitive to ions, temperature, and water contents and could be structurally influenced by the ionic dissolution products from bioactive glasses of different compositions. Therefore, this study evaluated the interplay between bioactive glass dissolution kinetics and poloxamer 407 properties, establishing a correlation between changes in the hydrogel and drug release kinetics. Three glass compositions were produced, yielding Ca-rich, Na-rich, and an intermediate glass composition. The influence of Ca/Na ratios on the glass structure and dissolution was investigated. Further, the glasses and ropivacaine were incorporated in the poloxamer hydrogel, and the self-assembly ability of poloxamer, the degradation rate, and the drug release kinetics of the composites were evaluated. The results suggested that glass connectivity affected the early-stage of glass dissolution, while sodium mobility influenced the long-term. The dissolution products from the glasses interact with the supramolecular structure of the poloxamer, causing structural changes responsible for hydrogel degradation. Consequently, by changing the Ca/Na ratio in the glasses, it is possible to modulate glass dissolution that, in turn, influences the ropivacaine release. Thus, we propose that the Ca/Na ratio in quaternary bioactive glasses can be used to modulate drug-delivery properties from systems based on bioactive glasses and poloxamer 407.


Subject(s)
Hydrogels , Poloxamer , Biocompatible Materials , Drug Delivery Systems , Drug Liberation , Glass , Humans , Kinetics , Solubility
2.
Analyst ; 146(3): 770-788, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33295358

ABSTRACT

Rapid and accurate classification and discrimination of bacteria is an important task and has been highlighted recently for rapid diagnostics using real-time results. Coupled with a recent report by Jim O'Neill [] that if left unaddressed antimicrobial resistance (AMR) in bacteria could kill 10 million people per year by 2050, which would surpass current cancer mortality, this further highlights the need for unequivocal identification of microorganisms. Whilst traditional microbiological testing has offered insights into the characterisation and identification of a wide range of bacteria, these approaches have proven to be laborious and time-consuming and are not really fit for purpose, considering the modern day speed and volume of international travel and the opportunities it creates for the spread of pathogens globally. To overcome these disadvantages, modern analytical methods, such as mass spectrometry (MS) and vibrational spectroscopy, that analyse the whole organism, have emerged as essential alternative approaches. Currently within clinical microbiology laboratories, matrix assisted laser desorption ionisation (MALDI)-MS is the method of choice for bacterial identification. This is largely down to its robust analysis as it largely measures the ribosomes which are always present irrespective of how the bacteria are cultured. However, MALDI-MS requires large amounts of biomass and infrared spectroscopy and Raman spectroscopy are attractive alternatives as these physicochemical bioanalytical techniques have the advantages of being rapid, reliable and cost-effective for analysing various types of bacterial samples, even at the single cell level. In this review, we discuss the fundamental applications, advantages and disadvantages of modern analytical techniques used for bacterial characterisation, classification and identification.


Subject(s)
Bacteria , Bacterial Typing Techniques , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
3.
Appl Spectrosc ; 74(7): 758-766, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32419472

ABSTRACT

Burns are one of the leading causes of morbidity worldwide and the most costly traumatic injuries. A better understanding of the molecular mechanisms in wound healing is required to accelerate tissue recovery and reduce the health economic impact. However, the standard techniques used to evaluate the biological events associated to wound repair are laborious, time-consuming, and/or require multiple assays/staining. Therefore, this study aims to evaluate the feasibility of Fourier transform infrared (FT-IR) spectroscopy to monitor the progress and healing status of burn wounds. Burn injuries were induced on Wistar rats by water vapor exposure and biopsied for further histopathological and spectroscopic evaluation at four time-points (3, 7, 14, and 21 days). Spectral data were preprocessed and compared by principal component analysis. Pairwise comparison of post-burn groups to each other revealed that metabolic activity induced by thermal injury decreases as the healing progresses. Higher amounts of carbohydrates, proteins, lipids, and nucleic acids were evidenced on days 3 and 7 compared to healthy skin and reduced amounts of these molecular structural units on days 14 and 21 post-burn. FT-IR spectroscopy was used to determine the healing status of a wound based on the biochemical information retained by spectral signatures in each phase of healing. Our findings demonstrate that FT-IR spectroscopy can monitor the biological events triggered by burn trauma as well as to detect the wound status including full recovery based on the spectral changes associated to the biochemical events in each phase.


Subject(s)
Burns/therapy , Skin/injuries , Wound Healing , Animals , Burns/diagnostic imaging , Infrared Rays , Rats, Wistar , Spectrum Analysis
4.
Lasers Surg Med ; 48(5): 538-45, 2016 07.
Article in English | MEDLINE | ID: mdl-26899946

ABSTRACT

BACKGROUND AND OBJECTIVE: Vibrational spectroscopic methods associated with multivariate statistical techniques have been succeeded in discriminating skin lesions from normal tissues. However, there is no study exploring the potential of these techniques to assess the alterations promoted by photodynamic effect in tissue. The present study aims to demonstrate the ability of Fourier Transform Infrared (FTIR) spectroscopy on Attenuated total reflection (ATR) sampling mode associated with principal component-linear discriminant analysis (PC-LDA) to evaluate the biochemical changes caused by photodynamic therapy (PDT) in skin neoplastic tissue. MATERIALS AND METHODS: Cutaneous neoplastic lesions, precursors of squamous cell carcinoma (SCC), were chemically induced in Swiss mice and submitted to a single session of 5-aminolevulinic acid (ALA)-mediated PDT. Tissue sections with 5 µm thickness were obtained from formalin-fixed paraffin-embedded (FFPE) and processed prior to the histopathological analysis and spectroscopic measurements. Spectra were collected in mid-infrared region using a FTIR spectrometer on ATR sampling mode. Principal Component-Linear Discriminant Analysis (PC-LDA) was applied on preprocessed second derivatives spectra. Biochemical changes were assessed using PCA-loadings and accuracy of classification was obtained from PC-LDA . RESULTS: Sub-bands of Amide I (1,624 and 1,650 cm(-1) ) and Amide II (1,517 cm(-1) ) indicated a protein overexpression in non-treated and post-PDT neoplastic tissue compared with healthy skin, as well as a decrease in collagen fibers (1,204, 1,236, 1,282, and 1,338 cm(-1) ) and glycogen (1,028, 1,082, and 1,151 cm(-1) ) content. Photosensitized neoplastic tissue revealed shifted peak position and decreased ß-sheet secondary structure of proteins (1,624 cm(-1) ) amount in comparison to non-treated neoplastic lesions. PC-LDA score plots discriminated non-treated neoplastic skin spectra from post-PDT cutaneous lesions with accuracy of 92.8%, whereas non-treated neoplastic skin was discriminated from healthy tissue with 93.5% accuracy and post-PDT cutaneous lesions was discriminated from healthy tissue with 89.7% accuracy. CONCLUSION: PC-LDA was able to discriminate ATR-FTIR spectra of non-treated and post-PDT neoplastic lesions, as well as from healthy skin. Thus, the method can be used for early diagnosis of premalignant skin lesions, as well as to evaluate the response to photodynamic treatment. Lasers Surg. Med. 48:538-545, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Aminolevulinic Acid/pharmacology , Carcinoma, Squamous Cell/drug therapy , Photochemotherapy , Photosensitizing Agents/pharmacology , Skin Neoplasms/drug therapy , Skin/drug effects , Spectroscopy, Fourier Transform Infrared , Aminolevulinic Acid/therapeutic use , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Discriminant Analysis , Female , Mice , Photosensitizing Agents/therapeutic use , Precancerous Conditions/diagnosis , Precancerous Conditions/drug therapy , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Principal Component Analysis , Skin/metabolism , Skin/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
5.
Int J Mol Sci ; 16(4): 6621-30, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25811925

ABSTRACT

Nonmelanoma skin cancers represent 95% of cutaneous neoplasms. Among them, squamous cell carcinoma (SCC) is the more aggressive form and shows a pattern of possible metastatic profile. In this work, we used Fourier transform infrared spectroscopy (FTIR) spectroscopy to assess the biochemical changes in normal skin caused by squamous cell carcinoma induced by multi-stage chemical carcinogenesis in mice. Changes in the absorption intensities and shifts were observed in the vibrational modes associated to proteins, indicating changes in secondary conformation in the neoplastic tissue. Hierarchical cluster analysis was performed to evaluate the potential of the technique to differentiate the spectra of neoplastic and normal skin tissue, so that the accuracy obtained for this classification was 86.4%. In this sense, attenuated total reflection (ATR)-FTIR spectroscopy provides a useful tool to complement histopathological analysis in the clinical routine for the diagnosis of cutaneous squamous cell carcinoma.


Subject(s)
Biomarkers, Tumor/chemistry , Carcinoma, Squamous Cell/pathology , Skin Neoplasms/pathology , Spectroscopy, Fourier Transform Infrared/methods , Animals , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cluster Analysis , Female , Mice , Sensitivity and Specificity , Skin Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...