Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Molecules ; 28(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446758

ABSTRACT

Photodynamic therapy, an alternative that has gained weight and popularity compared to current conventional therapies in the treatment of cancer, is a minimally invasive therapeutic strategy that generally results from the simultaneous action of three factors: a molecule with high sensitivity to light, the photosensitizer, molecular oxygen in the triplet state, and light energy. There is much to be said about each of these three elements; however, the efficacy of the photosensitizer is the most determining factor for the success of this therapeutic modality. Porphyrins, chlorins, phthalocyanines, boron-dipyrromethenes, and cyanines are some of the N-heterocycle-bearing dyes' classes with high biological promise. In this review, a concise approach is taken to these and other families of potential photosensitizers and the molecular modifications that have recently appeared in the literature within the scope of their photodynamic application, as well as how these compounds and their formulations may eventually overcome the deficiencies of the molecules currently clinically used and revolutionize the therapies to eradicate or delay the growth of tumor cells.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy
2.
Future Med Chem ; 14(19): 1375-1402, 2022 10.
Article in English | MEDLINE | ID: mdl-36069190

ABSTRACT

Since they were first synthesized in 1965 by Treibs and Jacob, squaraine dyes have revolutionized the polymethine dyes' 'universe' and their potential applications due to their indisputable physical, chemical and biological properties. After 30 years and up to the present, various research teams have dedicated themselves to studying the squaraines' photodynamic therapy application using in vitro and in vivo models. The various structural modifications made to these compounds, as well as the influence they have shown to have in their phototherapeutic activity, are the main focus of the present review. Finally, the most evident limitations of this class of dyes, as well as future perspectives in the sense of hypothetically successfully overcoming them, are suggested by the authors.


Subject(s)
Cyclobutanes , Photochemotherapy , Coloring Agents , Cyclobutanes/chemistry , Cyclobutanes/pharmacology , Cyclobutanes/therapeutic use , Fluorescent Dyes/chemistry , Molecular Structure , Phenols
3.
Molecules ; 27(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36144515

ABSTRACT

Cancer remains one of the diseases with the highest worldwide incidence. Several cytotoxic approaches have been used over the years to overcome this public health threat, such as chemotherapy, radiotherapy, and photodynamic therapy (PDT). Cyanine dyes are a class of compounds that have been extensively studied as PDT sensitisers; nevertheless, their antiproliferative potential in the absence of a light source has been scarcely explored. Herein, the synthesis of eighteen symmetric mono-, tri-, and heptamethine cyanine dyes and their evaluation as potential anticancer agents is described. The influences of the heterocyclic nature, counterion, and methine chain length on the antiproliferative effects and selectivities were analysed, and relevant structure-activity relationship data were gathered. The impact of light on the cytotoxic activity of the most promising dye was also assessed and discussed. Most of the monomethine and trimethine cyanine dyes under study demonstrated a high antiproliferative effect on human tumour cell lines of colorectal (Caco-2), breast (MCF-7), and prostate (PC-3) cancer at the initial screening (10 µM). However, concentration-viability curves showed higher potency and selectivity for the Caco-2 cell line. A monomethine cyanine dye derived from benzoxazole was the most promising compound (IC50 for Caco-2 = 0.67 µM and a selectivity index of 20.9 for Caco-2 versus normal human dermal fibroblasts (NHDF)) and led to Caco-2 cell cycle arrest at the G0/G1 phase. Complementary in silico studies predicted good intestinal absorption and oral bioavailability for this cyanine dye.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Quinolines , Antineoplastic Agents/pharmacology , Benzoxazoles , Caco-2 Cells , Fluorescent Dyes , Humans
4.
Eur J Med Chem ; 229: 114071, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34979302

ABSTRACT

Squaraine dyes are a family of compounds known for their relevant photophysical and photochemical properties potentially useful as photosensitizing agents. Since pyridines have been introduced into the skeleton of several families of compounds to enhance their pharmacological activity, and this approach had not yet been performed on squaraines, novel dyes derived from benz[e]indole functionalized with picolyl- and dipicolylamine and N-ethyl and -hexyl chains were designed and synthesized. After being fully characterized, their interaction with human albumin was in vitro and in silico evaluated. Dyes were further assessed for their phototoxicity activity, and the most interesting ones were studied regarding cell localization and induction of morphological cell changes, genotoxicity, apoptosis and cell cycle arrest. The molecules with N-ethyl chains showed the greatest in vitro light-dependent cytotoxic effects, particularly the zwitterionic squaraine dye and the one bearing a single pyridine unit, which also exhibited a more significant interaction with human albumin. Phenotypically, the cells incubated with these squaraines became smaller and rounded after irradiation, the effects varying with the tested concentration. Genotoxic effects were observed even without irradiation, being more evident for the N-ethyl picolylamine-derived dye. The fluorescence emitted by Rhodamine 123 largely coincided with that emitted by the dyes, suggesting that they are found preferentially in mitochondria. After irradiation, an increase in the subG1 population was verified by propidium iodide-staining analysis by flow cytometry, indicative of cell death by apoptosis.


Subject(s)
Amines/chemistry , Antineoplastic Agents/chemistry , Cyclobutanes/chemistry , Indoles/chemistry , Phenols/chemistry , Photosensitizing Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Cyclobutanes/pharmacology , Humans , Phenols/pharmacology , Photochemotherapy , Photosensitizing Agents/pharmacology , Propidium/chemistry , Rhodamines/chemistry , Serum Albumin, Human/chemistry , Structure-Activity Relationship
5.
Photodiagnosis Photodyn Ther ; 31: 101844, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32485406

ABSTRACT

Photodynamic therapy is a noninvasive approach for the treatment of oncological and nononcological diseases which has attempted to address the shortcomings and disadvantages of conventional cancer therapies. Given the scarcity of photosensitizers that exhibit desirable characteristics for its potential application in this therapeutic strategy, the main aims of this work were the study of the photophysical and photochemical properties, and the in vitro photobiological activity of several squaraine cyanine dyes. Thus, herein, the synthesis of indolenine-based N-methyl and N-ethyl mono- and dithiosquaraine dyes, the study of their spectroscopical properties, aggregation behavior, photodegradation and singlet oxygen production ability, and the further application of the previously synthesized dyes in colorectal adenocarninoma and hepatocellular carcinoma cell lines to evaluate their phototherapeutic effects, are described. Thionation significantly favored the ability to singlet oxygen production, and moderate photostability was observed for squaraine and monothionated dyes. Squaraine and monothiosquaraine cyanine dyes showed high promise within the tested concentration range regarding their potential application as cancer photodynamic therapy photosensitizers. Squaraine dyes' monothionation resulted in the preparation of compounds with poor photocytotoxicity, which was an undesirable effect on their phototherapeutic application.


Subject(s)
Neoplasms , Photochemotherapy , Caco-2 Cells , Coloring Agents , Humans , Photochemotherapy/methods , Photosensitizing Agents/pharmacology , Singlet Oxygen
6.
Materials (Basel) ; 13(11)2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32531981

ABSTRACT

Photodynamic therapy is an innovative treatment approach broadly directed towards oncological diseases. Its applicability and efficiency are closely related to the interaction of three main components, namely a photosensitizer, light and molecular triplet oxygen, which should drive cell death. Recently, several studies have demonstrated that squaraine cyanine dyes have a set of photophysical and photochemical properties that have made of these compounds' potential photosensitizers for this therapeutic modality. In the present research work, we describe the synthesis and characterization of four quinoline­ and benzoselenazole­derived unsymmetrical squaraine cyanine dyes. Except for the precursor of aminosquaraine dyes, i.e., O­methylated derivative, all dyes were evaluated for their behavior and absorption capacity in different organic and aqueous solvents, their ability to form singlet oxygen, their light­stability, and in vitro phototherapeutic effects against two human breast cancer cell cultures (BT­474 and MCF­7). Regardless of the nature of the used solvents, the synthesized dyes showed intense absorption in the red and near­infrared spectral regions, despite the formation of aggregates in aqueous media. Dyes showed high light­stability against light exposure. Despite the low ability to produce singlet oxygen, aminosquaraine dyes demonstrated worthy in vitro phototherapeutic activity.

7.
Materials (Basel) ; 13(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32369923

ABSTRACT

Photodynamic therapy is a medical modality developed for the treatment of several diseases of oncological and non-oncological etiology that requires the presence of a photosensitizer, light and molecular oxygen, which combined will trigger physicochemical reactions responsible for reactive oxygen species production. Given the scarcity of photosensitizers that exhibit desirable characteristics for its potential application in this therapeutic strategy, the main aims of this work were the study of the photophysical and photochemical properties and the photobiological activity of several dicyanomethylene squaraine cyanine dyes. Thus, herein, the study of their aggregation character, photobleaching and singlet oxygen production ability, and the further application of the previously synthesized dyes in Caco-2 and HepG2 cancer cell lines, to evaluate their phototherapeutic effects, are described. Dicyanomethylene squaraine dyes exhibited moderate light-stability and, despite the low singlet oxygen quantum yields, were a core of dyes that exhibited relevant in vitro photodynamic activity, as there was an evident increase in the toxicity of some of the tested dyes exclusive to radiation treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...