Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Anal Chem ; 95(16): 6507-6513, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37058365

ABSTRACT

The quantification of non-basic nitrogen-containing compounds (NCCs) in petroleum-derived samples has become a critical issue due to the undesirable effects of these compounds on the petroleum industry. In addition, there is a lack of analytical methods that allow the direct quantification of NCCs in these matrices. This paper provides strategies for obtaining quantitative information of NCCs in petroleum-derived samples using direct flow injection electrospray ionization (ESI) (-) Orbitrap mass spectrometry without fractionation steps. Benzocarbazole (BC) quantification was performed using the standard addition method. The method was validated, and all analytical parameters demonstrated satisfactory results in the matrix-mix. Paired Student's t-test exhibited the matrix effect (95% confidence level, p < 0.05). Limits of detection ranged from 2.94 to 14.91 µg L-1, and the limits of quantification ranged from 9.81 to 49.69 µg L-1. Intraday and interday accuracy and precision were not above 15%. Quantification of non-basic NCCs was carried out based on two approaches. In approach 1, the non-basic NCCs' total content in petroleum-derived samples was determined by the BC concentration and the total abundance correction. The method presented good performance with the average error of 21, 8.3, and 28% for crude oil, gas oil, and diesel samples, respectively. Approach 2 was based on the multiple linear regression model with regression significant at a 0.05 significance level within average relative errors of 16, 7.8, and 17% for the crude oil, gas oil, and diesel samples, respectively. Then, both approaches successfully predicted the quantification of non-basic NCCs by ESI direct flow injection.

2.
Anal Chem ; 94(40): 13691-13699, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36154021

ABSTRACT

Here, we present a new application of desorption electrospray ionization (DESI) and laser ablation electrospray ionization (LAESI) mass spectrometry imaging to assess the spatial location of organic compounds, both polar and nonpolar, directly from rock surfaces. Three carbonaceous rocks collected from an aquatic environment and a berea sandstone subjected to a small-scale oil recovery experiment were analyzed by DESI and LAESI. No rock pretreatment was required before DESI and LAESI analyses. DESI detected and spatially mapped several fatty acids and a disaccharide on the surfaces of carbonaceous rocks, and various nitrogenated and oxygenated compounds on the surfaces of berea sandstone. In contrast, LAESI using a 3.4 µm infrared laser beam was able to detect and map hydrocarbons on the surfaces of all rock samples. Both techniques can be combined to analyze polar and nonpolar compounds. DESI can be used first to detect polar compounds, as it does not destroy the rock surface, and LAESI can then be used to analyze nonpolar analytes, as it destroys a layer of the sample surface. Both techniques have the potential to be used in several scientific areas involving rocks and minerals, such as in the analysis of industry-derived contaminants in aquatic sediments or in small-scale rock-fluid interaction experiments.


Subject(s)
Laser Therapy , Spectrometry, Mass, Electrospray Ionization , Disaccharides , Fatty Acids , Hydrocarbons , Minerals , Spectrometry, Mass, Electrospray Ionization/methods
3.
Bol. latinoam. Caribe plantas med. aromát ; 19(1): 15-28, ene. 2020. tab, ilus
Article in English | LILACS | ID: biblio-1102865

ABSTRACT

The aim of this study was to investigate the chemical composition and acaricidal effect of two Psidium species essential oils and selected compounds on Tetranychus urticae. Essential oils from the leaves of Psidium laruotteanum and Psidium myrsinites were obtained through hydrodistillation, analyzed using CG-FID and CG-MS and evaluated for toxicity to T. urticae by fumigation and residual contact. The susceptibility of T. urticae to monoterpenes and sesquiterpenes was also investigated. The major constituents of the P. laruotteanum oil were (E)-nerolidol (9.6 ± 0.4%) and γ-terpinene (9.4 ± 0.6%) and the major constituents of the P. myrsinites oil were ß-caryophyllene (21.2 ± 0.9%) and α-humulene (10.3 ± 0.5%). Based on the LC50 estimates, no significant differences were found between the two oils regarding toxicity by fumigation or residual contact. ß-Caryophyllene and (E)-nerolidol had the highest level of toxicity, independently of the method investigated. The findings indicate that both oils and selected constituents, especially ß-caryophyllene and (E)-nerolidol, are promising as natural acaricidal agents that affect T. urticae through more than one mode of action.


Los aceites esenciales de las hojas de Psidium laruotteanum y Psidium myrsinites se obtuvieron por hidrodestilación, se analizaron por CG-FID y CG-MS, y se evaluaron sus toxicidades por fumigación y contacto residual contra Tetranychus urticae. Se investigó también la susceptibilidad del T. urticae a monoterpenos y sesquiterpenos. En el aceite esencial de P. laruotteanum, (E)-nerolidol (9.6 ± 0.4%) y γ-terpinene (9.4 ± 0.6%) se identificaron como constituyentes mayoritarios, mientras que en el aceite esencial de P. myrsinites, ß-caryophyllene (21.2 ± 0.9%) y α-humulene (10.3 ± 0.5%) se encontraron como mayoritarios. Con base en las CL50 estimadas, no se observaron diferencias significativas entre las toxicidades de los aceites por fumigación, y tampoco por contacto residual. ßCaryophyllene y (E)-nerolidol presentaron las mayores toxicidades, independientemente del método investigado. Estos resultados indican, que los dos aceites, así como los constituyentes seleccionados, entre los que se destacan ß-caryophyllene y (E)-nerolidol, son promisores agentes acaricidas naturales por actuar en el T. urticae por más de un mecanismo de acción.


Subject(s)
Animals , Oils, Volatile/pharmacology , Plant Leaves/chemistry , Tetranychidae/drug effects , Psidium/chemistry , Acaricides/pharmacology , Terpenes/analysis , Brazil , Oils, Volatile/chemistry , Pest Control , Fumigation , Acaricides/chemistry , Flame Ionization , Gas Chromatography-Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...