Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 161
Filter
1.
Med Chem ; 18(1): 88-96, 2022.
Article in English | MEDLINE | ID: mdl-33380306

ABSTRACT

AIMS: This study evaluates the ability of chalcones to scavenge hypochlorous acid (HOCl) and modulate oxidative burst. BACKGROUND: The chemistry of chalcones has long been a matter of interest to the scientific community due to the phenolic groups often present and to the various replaceable hydrogens that allow the formation of a broad number of derivatives. Due to this chemical diversity, several biological activities have been attributed to chalcones, namely anti-diabetic, anti-inflammatory and antioxidant. OBJECTIVES: Evaluate the ability of a panel of 34 structurally related chalcones to scavenge HOCl and/or suppress its production through the inhibition of human neutrophils' oxidative burst, followed by the establishment of the respective structure-activity relationships. METHODS: The ability of chalcones to scavenge HOCl was evaluated by fluorimetric detection of the inhibition of dihydrorhodamine 123 oxidation. The ability of chalcones to inhibit neutrophils' oxidative burst was evaluated by chemiluminometric detection of the inhibition of luminol oxidation. RESULTS: It was observed that the ability to scavenge HOCl depends on the position and number of hydroxy groups on both aromatic rings. Chalcone 5b was the most active with an IC50 value of 1.0 ± 0.1 µM. The ability to inhibit neutrophils' oxidative burst depends on the presence of a 2'-hydroxy group on A-ring and on other substituents groups, e.g. methoxy, hydroxy, nitro and/or chlorine atom( s) at C-2, C-3 and/or C-4 on B-ring, as in chalcones 2d, 2f, 2j, 2i, 4b, 2n and 1d, which were the most actives with IC50 values ranging from 0.61 ± 0.02 µM to 1.7 ± 0.2 µM. CONCLUSION: The studied chalcones showed high activity at a low micromolar range, indicating their potential as antioxidant agents and to be used as a molecular structural scaffold for the design of new anti-inflammatory compounds.


Subject(s)
Chalcone , Chalcones , Chalcones/pharmacology , Humans , Hypochlorous Acid , Respiratory Burst , Structure-Activity Relationship
2.
Talanta ; 204: 542-547, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31357331

ABSTRACT

The repeatable immobilization of molecular recognition elements onto particle surfaces has a strong impact on the outcomes of affinity-based assays. In this work, an automatic method for the immobilization of immunoglobulin G (IgG) onto protein A-Sepharose microbeads was established through the flow programming features of the portable lab-on-valve platform using micro-bead injection spectroscopy. The reproducible packing of protein A-microbeads between two optic fibers was feasible, allowing on-column probing of IgG retention. The automation of solutions handling and the precise control of time of IgG interaction with the beads rendered repeatable immobilization cycles, within a short timeframe (<2 min). The proposed method featured the preparation of disposable immunosorbents for downstream analytical applications, such as immunosensing or microenrichment of target analytes. In-situ quantification of IgG@protein A-microbeads was carried out using a horseradish peroxidase-labeled detection IgG. The colorimetric oxidation of 3,3',5,5'-tetramethylbenzidine was monitored on-column. Quantitation of mouse and human IgG immobilized@protein A-microbeads was achieved for loading masses between 0.1 and 0.4 µg per ca. 5.5 mg of sorbent. The implemented detection strategy allowed the quantification of human IgG in certified human serum (ERM®- DA470k/IFCC) and spiked saliva, yielding recoveries of 102-108% and requiring minimal volume (1-15 µL) from serum and saliva.


Subject(s)
Chromatography, Affinity/methods , Immobilized Proteins/chemistry , Immunoglobulin G/blood , Sepharose/analogs & derivatives , Staphylococcal Protein A/chemistry , Animals , Armoracia/enzymology , Benzidines/chemistry , Chromogenic Compounds/chemistry , Colorimetry/methods , Horseradish Peroxidase/chemistry , Humans , Mice , Microspheres , Oxidation-Reduction , Saliva/chemistry , Sepharose/chemistry
3.
Oxid Med Cell Longev ; 2019: 7198484, 2019.
Article in English | MEDLINE | ID: mdl-30733852

ABSTRACT

The purpose of an experimental design is to improve the productivity of experimentation. It is an efficient procedure for planning experiments, so the data obtained can be analyzed to yield a valid and objective conclusion. This approach has been used as an important tool in the optimization of different analytical approaches. A D-optimal experimental design was used here, for the first time, to optimize the experimental conditions for the detection of reactive oxygen species (ROS) produced by human blood from healthy donors, a biological matrix that better resembles the physiologic environment, following stimulation by a potent inflammatory mediator, phorbol-12-myristate-13-acetate (PMA). For that purpose, different fluorescent probes were used, as 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA), 2-[6-(4'-amino)-phenoxy-3H-xanthen-3-on-9-yl] benzoic acid (APF), and 10-acetyl-3,7-dihydroxyphenoxazine (amplex red). The variables tested were the human blood dilution, and the fluorescent probe and PMA concentrations. The experiments were evaluated using the Response Surface Methodology and the method was validated using specific compounds. This model allowed the search for optimal conditions for a set of responses simultaneously, enabling, from a small number of experiments, the evaluation of the interaction between the variables under study. Moreover, a cellular model was implemented and optimized to detect the production of ROS using a yet nonexplored matrix, which is human blood.


Subject(s)
Blood/metabolism , Reactive Oxygen Species/metabolism , Humans
4.
Cells ; 7(11)2018 Nov 09.
Article in English | MEDLINE | ID: mdl-30423935

ABSTRACT

In neutrophils, intracellular Ca2+ levels are regulated by several transporters and pathways, namely SERCA [sarco(endo)plasmic reticulum Ca2+-ATPase], SOCE (store-operated calcium entry), and ROCE (receptor-operated calcium entry). However, the exact mechanisms involved in the communication among these transporters are still unclear. In the present study, thapsigargin, an irreversible inhibitor of SERCA, and ML-9, a broadly used SOCE inhibitor, were applied in human neutrophils to better understand their effects on Ca2+ pathways in these important cells of the immune system. The thapsigargin and ML-9 effects in the intracellular free Ca2+ flux were evaluated in freshly isolated human neutrophils, using a microplate reader for monitoring fluorimetric kinetic readings. The obtained results corroborate the general thapsigargin-induced intracellular pattern of Ca2+ fluctuation, but it was also observed a much more extended effect in time and a clear sustained increase of Ca2+ levels due to its influx by SOCE. Moreover, it was obvious that ML-9 enhanced the thapsigargin-induced emptying of the internal stores. Indeed, ML-9 does not have this effect by itself, which indicates that, in neutrophils, thapsigargin does not act only on the influx by SOCE, but also by other Ca2+ pathways, that, in the future, should be further explored.

5.
Curr Med Chem ; 25(28): 3374-3412, 2018.
Article in English | MEDLINE | ID: mdl-29446723

ABSTRACT

Inflammatory Bowel Diseases (IBD) comprised of two disorders of idiopathic chronic intestinal inflammation that affect about three million people worldwide: Crohn's disease and ulcerative colitis. Nowadays, the first-line of treatment for patients with mild to moderate symptoms of IBD is comprised of corticosteroids, immunosuppressants, antibiotics, and biological agents. Unfortunately, none of these drugs are curative, and their long-term use may cause severe side effects and complications. Almost 40% of IBD patients use alternative therapies to complement the conventional one, and flavonoids are gaining attention for this purpose. The biological properties of flavonoids are well documented and their antioxidant and anti-inflammatory activities have been arousing attention in the scientific community. Flavonoids are the most widely distributed polyphenols in plants and fruits, making part of the human diet. Taking into account that all ingested flavonoids are expected to exert biological actions at the gastrointestinal level, research on the modulatory effect of these compounds in IBD is of paramount importance. This review intends to summarize, in an integrated and comprehensive form, the effect of flavonoids, both in vitro and in vivo, in the different phases of the characteristic IBD inflammatory network.


Subject(s)
Flavonoids/therapeutic use , Inflammatory Bowel Diseases/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Crohn Disease/drug therapy , Crohn Disease/metabolism , Crohn Disease/pathology , Humans , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Reactive Oxygen Species/metabolism , Transcription Factors/metabolism
6.
Anal Bioanal Chem ; 410(3): 981-988, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28889209

ABSTRACT

Immunoglobulin G (IgG) represents the major fraction of antibodies in healthy adult human serum, and deviations from physiological levels are a generic marker of disease corresponding to different pathologies. Therefore, screening methods for IgG evaluation are a valuable aid to diagnostics. The present work proposes a rapid, automatic, and miniaturized method based on UV-vis micro-bead injection spectroscopy (µ-BIS) for the real-time determination of human serum IgG with label-free detection. Relying on attachment of IgG in rec-protein G immobilized in Sepharose 4B, a bioaffinity column is automatically assembled, where IgG is selectively retained and determined by on-column optical density measurement. A "dilution-and-shoot" approach (50 to 200 times) was implemented without further sample treatment because interferences were flushed out of the column upon sample loading, with minimization of carryover and cross-contamination by automatically discarding the sorbent (0.2 mg) after each determination. No interference from human serum albumin at 60 mg mL-1 in undiluted sample was found. The method allowed IgG determination in the range 100-300 µg mL-1 (corresponding to 5.0-60 mg mL-1 in undiluted samples), with a detection limit of 33 µg mL-1 (1.7 mg mL-1 for samples, dilution factor of 50). RSD values were < 9.4 and < 11.7%, for intra and inter-assay precision, respectively, while recovery values for human serum spiked with IgG at high pathological levels were 97.8-101.4%. Comparison to commercial ELISA kit showed no significant difference for tested samples (n = 8). Moreover, time-to-result decreased from several hours to < 5 min and analysis cost decreased 10 times, showing the potential of the proposed approach as a point-of-care method. Graphical abstract Micro-Bead Injection Spectroscopy method for real time, automated and label-free determination of total serum human Immunoglobulin G (IgG). The method was designed for Lab-on-Valve (LOV) platforms using a miniaturised protein G bioaffinity separative approach. IgG are separated from serum matrix components upon quantification with low non-specific binding in less than 5 min.


Subject(s)
Immunoglobulin G/blood , Bacterial Proteins/chemistry , Equipment Design , Humans , Immobilized Proteins/chemistry , Immunoglobulin G/isolation & purification , Sepharose/chemistry , Spectrum Analysis/instrumentation
7.
J R Soc Interface ; 14(133)2017 08.
Article in English | MEDLINE | ID: mdl-28855387

ABSTRACT

Daunorubicin is extensively used in chemotherapy for diverse types of cancer. Over the years, evidence has suggested that the mechanisms by which daunorubicin causes cytotoxic effects are also associated with interactions at the membrane level. The aim of the present work was to study the interplay between daunorubicin and mimetic membrane models composed of different ratios of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), sphingomyelin (SM) and cholesterol (Chol). Several biophysical parameters were assessed using liposomes as mimetic model membranes. Thereby, the ability of daunorubicin to partition into lipid bilayers, its apparent location within the membrane and its effect on membrane fluidity were investigated. The results showed that daunorubicin has higher affinity for lipid bilayers composed of DMPC, followed by DMPC : SM, DMPC : Chol and lastly by DMPC : SM : Chol. The addition of SM or Chol into DMPC membranes not only increases the complexity of the model membrane but also decreases its fluidity, which, in turn, reduces the amount of anticancer drug that can partition into these mimetic models. Fluorescence quenching studies suggest a broad distribution of the drug across the bilayer thickness, with a preferential location in the phospholipid tails. The gathered data support that daunorubicin permeates all types of membranes to different degrees, interacts with phospholipids through electrostatic and hydrophobic bonds and causes alterations in the biophysical properties of the bilayers, namely in membrane fluidity. In fact, a decrease in membrane fluidity can be observed in the acyl region of the phospholipids. Ultimately, such outcomes can be correlated with daunorubicin's biological action, where membrane structure and lipid composition have an important role. In fact, the results indicate that the intercalation of daunorubicin between the phospholipids can also take place in rigid domains, such as rafts that are known to be involved in different receptor processes, which are important for cellular function.


Subject(s)
Cell Membrane Permeability , Cell Membrane/chemistry , Daunorubicin/chemistry , Membranes, Artificial , Models, Chemical , Animals , Cell Membrane/metabolism , Daunorubicin/pharmacokinetics , Humans , Membrane Lipids/chemistry , Membrane Lipids/metabolism
8.
Sci Rep ; 7(1): 6343, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740256

ABSTRACT

Despite doxorubicin being commonly used in chemotherapy there still remain significant holes in our knowledge regarding its delivery efficacy and an observed resistance mechanism that is postulated to involve the cell membrane. One possible mechanism is the efflux by protein P-gp, which is found predominantly in cholesterol enriched domains. Thereby, a hypothesis for the vulnerability of doxorubicin to efflux through P-gp is its enhanced affinity for the ordered cholesterol rich regions of the plasma membrane. Thus, we have studied doxorubicin's interaction with model membranes in a cholesterol rich, ordered environment and in liquid-disordered cholesterol poor environment. We have combined three separate experimental protocols: UV-Vis spectrophotometry, fluorescence quenching and steady-state anisotropy and computational molecular dynamics modeling. Our results show that the presence of cholesterol induces a change in membrane structure and doesn't impair doxorubicin's membrane partitioning, but reduces drug's influence on membrane fluidity without directly interacting with it. It is thus possible that the resistance mechanism that lowers the efficacy of doxorubicin, results from an increased density in membrane regions where the efflux proteins are present. This work represents a successful approach, combining experimental and computational studies of membrane based systems to unveil the behavior of drugs and candidate drug molecules.


Subject(s)
Cell Membrane/drug effects , Computational Biology/methods , Doxorubicin/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/chemistry , Computer Simulation , Doxorubicin/chemistry , Membrane Fluidity/drug effects , Membranes, Artificial , Models, Molecular , Molecular Dynamics Simulation , Spectrophotometry, Ultraviolet
9.
Inflammation ; 40(4): 1155-1165, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28405852

ABSTRACT

Flavonoids are known to react with neutrophil-generated hypochlorous acid (HOCl) at inflammation loci to form stable mono- and dichlorinated products. Some of these products have been shown to retain or even enhance their inflammatory potential, but further information is required in a broader approach to inflammatory mechanisms. In that sense, we performed an integrated evaluation on the anti-inflammatory potential of a panel of novel chlorinated flavonoids and their parent compounds, in several steps of the complex inflammatory cascade, namely, in the activity of cyclooxygenase (COX)-1 and COX-2, and in the production of cytokines [interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)], and the chemokine, IL-8, as well as in the production of reactive species, using human whole blood as a representative in vitro model, establishing, whenever possible, a structure-activity relationship. Although luteolin was the most active compound, chlorinated flavonoids demonstrated a remarkable pattern of activity for the resolution of the inflammatory processes. Our results demonstrated that 6-chloro-3',4',5,7-tetrahydroxyflavone deserves scientific attention due to its ability to modulate the reactive species and cytokines/chemokine production. In this regard, the therapeutic potential of flavonoids' metabolites, and in this particular case the chlorinated flavonoids, should not be neglected.


Subject(s)
Flavonoids/pharmacology , Hypochlorous Acid/chemistry , Inflammation Mediators/pharmacology , Inflammation/blood , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cytokines/biosynthesis , Cytokines/metabolism , Flavonoids/chemistry , Humans , Hydrocarbons, Chlorinated , Inflammation Mediators/chemistry , Interleukin-8/metabolism , Structure-Activity Relationship
10.
Biochim Biophys Acta Biomembr ; 1859(5): 941-948, 2017 May.
Article in English | MEDLINE | ID: mdl-28153496

ABSTRACT

The present work aimed to study the interactions between the anticancer drug daunorubicin and lipid membrane mimetic models of cancer cells composed by their most representative classes of phospholipids, with different degrees of complexity. Regarding these anticancer drug-membrane interactions, several biophysical parameters were assessed using liposomes (LUVs) composed of different molar ratios of DMPC, DOPC, DPPS, DOPE and Chol. In this context, daunorubicin's membrane concentration was determined by calculating its partition coefficient (Kp) between liposomes and water using derivative UV/vis spectrophotometry at 37°C and pH6.3, a typical tumoral microenvironment. Characterization of the zeta potential of such model membranes, in both the absence and presence of the compound, was accomplished through Electrophoretic Light Scattering (ELS). Fluorescence quenching studies, which determine the location of the drug within the bilayer, were carried out using liposomes labelled with DPH and TMA-DPH, fluorescent probes with known membrane position. Temperature dependent steady-state anisotropy assays were also performed to measure the daunorubicin effect on the membranes' microviscosity. The overall results support that daunorubicin permeation depends on the phospholipid membrane composition and causes alterations in the biophysical properties of the bilayers, namely in the membrane fluidity. The interaction of daunorubicin with the studied phospholipids is mainly driven by electrostatic and hydrophobic interactions. These insights demonstrated that not only membranes can affect daunorubicin accumulation in cells but the compound can alter the properties of membranes. The changes produced by daunorubicin on the lipid structure may constitute an additional mechanism of action, which might lead to modifications in the location and, consequently, the activity of membrane signaling proteins.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Daunorubicin/pharmacology , Lipid Bilayers/chemistry , Anisotropy , Biophysics , Daunorubicin/pharmacokinetics , Fluorescent Dyes , Hydrogen-Ion Concentration , Light , Membrane Fluidity/drug effects , Neoplasms/drug therapy , Scattering, Radiation
11.
Food Funct ; 7(5): 2249-57, 2016 May 18.
Article in English | MEDLINE | ID: mdl-27142444

ABSTRACT

Solanum diploconos is an unexploited Brazilian native fruit that belongs to the same genus of important food crops, such as tomato (Solanum lycorpersicum) and potato (Solanum tuberosum). In this study, we determined, for the first time, the profile of bioactive compounds (phenolic compounds, carotenoids, ascorbic acid and tocopherols) of the freeze-dried pulp and peel of Solanum diploconos fruits, as well as of an extract obtained from the whole fruit. Additionally, the antioxidant potential of the whole fruit extract was evaluated in vitro, against reactive oxygen species (ROS) and reactive nitrogen species (RNS). Eighteen phenolic compounds were identified in the peel and pulp and 6 compounds were found in the whole fruit extract. Coumaric, ferulic and caffeic acid derivatives were revealed to be the major phenolic constituents. All-trans-ß-carotene was the major carotenoid (17-38 µg g(-1), dry basis), but all-trans-lutein and 9-cis-ß-carotene were also identified. The peel and pulp presented <2 µg per mL of tocopherols, and ascorbic acid was not detected. The whole fruit extract exhibited scavenging capacity against all tested ROS and RNS (IC50 = 14-461 µg mL(-1)) with high antioxidant efficiency against HOCl. Thus, Solanum diploconos fruits may be seen as a promising source of bioactive compounds with high antioxidant potential against the most physiologically relevant ROS and RNS.


Subject(s)
Antioxidants/analysis , Fruit/chemistry , Plant Extracts/chemistry , Solanum/chemistry , Antioxidants/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/genetics , Brazil , Caffeic Acids/analysis , Caffeic Acids/chemistry , Carotenoids/analysis , Carotenoids/chemistry , Chromatography, High Pressure Liquid , Coumaric Acids/analysis , Coumaric Acids/chemistry , Free Radical Scavengers/analysis , Free Radical Scavengers/chemistry , Hydrogen Peroxide , Hypochlorous Acid , Lutein/analysis , Lutein/chemistry , Nitric Oxide , Peroxynitrous Acid , Phenols/analysis , Phenols/chemistry , Reactive Nitrogen Species/chemistry , Reactive Oxygen Species/chemistry , Singlet Oxygen , Superoxides , Tocopherols/analysis , Tocopherols/chemistry
12.
Talanta ; 150: 599-606, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838448

ABSTRACT

An automated oxygen radical absorbance capacity (ORAC) method based on programmable flow injection analysis was developed for the assessment of antioxidant reactivity. The method relies on real time spectrophotometric monitoring (540 nm) of pyrogallol red (PGR) bleaching mediated by peroxyl radicals in the presence of antioxidant compounds within the first minute of reaction, providing information about their initial reactivity against this type of radicals. The ORAC-PGR assay under programmable flow format affords a strict control of reaction conditions namely reagent mixing, temperature and reaction timing, which are critical parameters for in situ generation of peroxyl radical from 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). The influence of reagent concentrations and programmable flow conditions on reaction development was studied, with application of 37.5 µM of PGR and 125 mM of AAPH in the flow cell, guaranteeing first order kinetics towards peroxyl radicals and pseudo-zero order towards PGR. Peroxyl-scavenging reactivity of antioxidants, bioactive compounds and phenolic-rich beverages was estimated employing the proposed methodology. Recovery assays using synthetic saliva provided values of 90 ± 5% for reduced glutathione. Detection limit calculated using the standard antioxidant compound Trolox was 8 µM. RSD values were <3.4 and <4.9%, for intra and inter-assay precision, respectively. Compared to previous batch automated ORAC assays, the developed system also accounted for high sampling frequency (29 h(-1)), low operating costs and low generation of waste.


Subject(s)
Antioxidants/analysis , Coloring Agents/chemistry , Peroxides/chemistry , Pyrogallol/analogs & derivatives , Reactive Oxygen Species/chemistry , Peroxides/metabolism , Pyrogallol/chemistry , Reactive Oxygen Species/metabolism
13.
Talanta ; 146: 369-74, 2016.
Article in English | MEDLINE | ID: mdl-26695277

ABSTRACT

A low-pressure liquid chromatography system for the on-line quantification of caffeine loaded into lipid nanoparticles that permeates pig skin was developed. The apparatus includes a Franz diffusion cell with computer-controlled sampling that allows collection of acceptor solution with automatic compensation for sample withdrawing, and a C-18 reversed-phase monolithic column integrated in a typical Flow Injection Analysis (FIA) set-up where separation between caffeine and other matrix elements is performed before spectrophotometric quantification at 273 nm. Several parameters regarding chromatographic analysis (propulsion element, column length, mobile phase composition, and flow rate) were studied along with the establishment of the sampling procedure. Under the selected conditions (monolithic column Chromolith® RP-18 15 mm × 4.6 mm i.d., acetonitrile:water 10:90 (v/v), flow rate 0.45 mL min(-1)) a detection limit of 4 µM and RSD values for caffeine concentration <2% were achieved. High recovery values were obtained when Hepes buffer incubated as acceptor solution in presence of pig skin for 8 h was spiked with caffeine (103±5%). The developed system also accounts for low organic solvent consumption, low operating costs, low generation of waste and high sample throughput (24 h(-1)). Due to the real time automated sampling and high throughput, transdermal permeation profiles of nanoformulations can be established within a time frame seldom observed by conventional techniques.


Subject(s)
Chromatography, Reverse-Phase/methods , Drug Carriers/chemistry , Drug Carriers/metabolism , Lipids/chemistry , Nanoparticles/chemistry , Pressure , Skin/metabolism , Animals , Automation , Caffeine/analysis , Caffeine/chemistry , Diffusion , Flow Injection Analysis , Humans , Limit of Detection , Permeability , Reproducibility of Results , Swine
14.
Med Res Rev ; 35(5): 877-936, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25926332

ABSTRACT

Inflammation is a natural, carefully orchestrated response of the organism to tissue damage, involving various signaling systems and the recruitment of inflammatory cells. These cells are stimulated to release a myriad of mediators that amplify the inflammatory response and recruit additional cells. These mediators present numerous redundancies of functions, allowing a broad and effective inflammatory response, but simultaneously make the understanding of inflammation pathways much difficult. The extent of the inflammatory response is usually self-limited, although it depends on the balance between the pro- and anti-inflammatory signals. When that equilibrium is dislocated, a more widespread inflammatory response may take place. Flavonoids have been shown to be possible alternatives to the traditionally molecules used as anti-inflammatory agents. In fact, the biological activities of flavonoids include the modulation of the diverse phases of inflammatory processes, from the gene transcription and expression to the inhibition of the enzymatic activities and the scavenging of the reactive species. In the present review, the inflammatory network is widely revised and the flavonoids' broad spectrum of action in many of the analyzed inflammatory pathways is revised. This kind of integrated revision is original in the field, providing the reader the simultaneous comprehension of the inflammatory process and the potential beneficial activities of flavonoids.


Subject(s)
Flavonoids/chemistry , Inflammation/physiopathology , Animals , Basophils/cytology , Blood Platelets/cytology , Dendritic Cells/cytology , Eicosanoids/chemistry , Endothelial Cells/cytology , Eosinophils/cytology , Epithelial Cells/cytology , Fibroblasts/cytology , Granulocytes/cytology , Humans , Lipids/chemistry , Lymphocytes/cytology , Macrophages/cytology , Mast Cells/cytology , Monocytes/cytology , Neutrophils/cytology , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Transcription Factors/metabolism
15.
Med Chem ; 11(6): 560-6, 2015.
Article in English | MEDLINE | ID: mdl-25665653

ABSTRACT

Nuclear factor kappa B (NF-kB) is one of the most important transcription factors whose modulation triggers a cascade of signaling events, namely the expression of many cytokines, enzymes, chemokines, and adhesion molecules, some of which being potential key targets for intervention in the treatment of inflammatory conditions. The 2-styrylchromones (2-SC) designation represents a well-recognized group of natural and synthetic chromones, vinylogues of flavones (2-phenylchromones). Several 2-SC were recently tested for their anti-inflammatory potential, regarding the arachidonic acid metabolic cascade, showing some motivating results. In addition, several flavones with structural similarities to 2-SC have shown NF-kB inhibitory properties. Hence, the aim of the present work was to continue the investigation on the interference of 2-SC in inflammatory pathways. Herein we report their effects on lipopolysaccharide (LPS)-induced NF-kB activation and consequent production of proinflammatory cytokines/chemokine, using a human monocytic cell line (THP-1). From the twelve 2-SC tested, three of them were able to significantly inhibit the NF-kB activation and to reduce the production of the proinflammatory cytokines/chemokine. The compound 3',4',5-trihydroxy-2- styrylchromone stood up as the most active in both assays, being a promising candidate for an anti-inflammatory drug.


Subject(s)
Chromones/pharmacology , Cytokines/biosynthesis , Monocytes/drug effects , Monocytes/metabolism , NF-kappa B/antagonists & inhibitors , Cell Survival , Chromones/chemical synthesis , Chromones/chemistry , Dose-Response Relationship, Drug , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Molecular Structure , NF-kappa B/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
16.
Talanta ; 133: 45-51, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25435225

ABSTRACT

This paper presents a new way to the synthesis of uniform and size-controlled silver nanoparticles by means of microreaction technology. It complies with the philosophy of green chemistry by developing a process that prevents pollution at source-by automation of the manipulations using microtubes manifolds and with the use of benign reagents and photochemistry to enhance the reaction of synthesis of Ag nanoparticles. Effect of hydrodynamic parameters (reagent volumes and volume flow rate) and concentrations (reducer and stabilizer), temperature, pH and UV irradiation time on morphology and size of nanoparticles was studied. The silver nanoparticles has been characterized by transmission electronic microscopy (TEM), electron diffraction X-ray spectroscopy (EDS), UV-vis spectra analysis, dynamic light scattering (DLS) and zeta potential measurements. Particles are mostly spherical in shape and have average sizes between 7 and 20 nm. The particle size can be controlled by changing not only the flow rate and UV light time exposition but also the reducer/AgNO3 concentration ratio. This is a sustainable and cost-saving methodology that guarantees not only reproducible synthesis, but also the changing of NPs characteristics at time by simple control of the fluid transport.


Subject(s)
Green Chemistry Technology/instrumentation , Metal Nanoparticles/chemistry , Microfluidic Analytical Techniques/instrumentation , Nanotechnology/instrumentation , Silver/chemistry , Equipment Design , Flow Injection Analysis/instrumentation , Metal Nanoparticles/ultrastructure , Particle Size
17.
Inflammation ; 38(2): 858-70, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25139581

ABSTRACT

Cyclooxygenase 2 (COX-2) and the production of cytokines/chemokines are important targets for the modulation of the inflammatory response. Although a large variety of inhibitors of these pathways have been commercialized, some of those inhibitors present severe side effects, governing the search for new molecules, as alternative anti-inflammatory agents. This study was undertaken to study an hitherto not evaluated group of flavonoids, concerning its capacity to inhibit COX-1 and COX-2 enzymes, as well as to inhibit the production of the cytokines and a chemokine, in a complex matrix involved in the systemic inflammatory process, the blood, aiming the establishment of a structure-activity relationship. The results obtained reveal promising flavonoids for the modulation of the inflammatory process, namely the ones presenting a catechol group in B ring, as some flavonoids were able to simultaneously inhibit the production of inflammatory prostaglandin E2 and pro-inflammatory cytokines.


Subject(s)
Chemokines/antagonists & inhibitors , Cyclooxygenase 1 , Cyclooxygenase 2 Inhibitors/pharmacology , Cytokines/antagonists & inhibitors , Flavonoids/pharmacology , Chemokines/blood , Cyclooxygenase 1/blood , Cyclooxygenase 2/blood , Cyclooxygenase 2 Inhibitors/chemistry , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Cytokines/blood , Flavonoids/chemistry , Humans
18.
Talanta ; 121: 281-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24607139

ABSTRACT

A rapid and simple screening method was developed for the determination of sulfonamides in honey samples by flow injection analysis (FIA) coupled to a liquid waveguide capillary cell. The proposed method is based on the reaction between sulfonamides and p-dimethylaminocinnamaldehyde (p-DAC) in the presence of sodium dodecylsulate (SDS) in dilute acid medium (hydrochloric acid), with the reaction product being measured spectrophotometrically at λ(max) = 565 nm. Experimental design methodology was used to optimize the analytical conditions. The proposed technique was applied to the determination of sulfonamides (sulfaquinoxaline, sulfadimethoxine, and sulfathiazole) in honey samples, in a concentration range from 6.00 × 10(-3) to 1.15 × 10(-1)mg L(-1). The detection (LOD) and quantification (LOQ) limits were 1.66 × 10(-3) and 5.54 × 10(-3)mg L(-1), respectively. Positive and false positive samples were also analyzed by a confirmatory HPLC method. The proposed system enables the screening of sulfonamides in honey samples with a low number of false positive results, with fast response therefore offers a new tool for consumer protection.


Subject(s)
Flow Injection Analysis/methods , Honey/analysis , Sulfonamides/analysis
19.
Colloids Surf B Biointerfaces ; 111: 626-35, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23907050

ABSTRACT

Membranes are major targets to oxidative damage, particularly due to lipid oxidation, which has been associated to aging. The role, efficacy and membrane interaction of antioxidants is still unclear, requiring further understanding of molecular interaction. Hence, the objective of this work was to evaluate the interaction between antioxidants (α-tocopherol and its aqueous soluble analog Trolox) and the monolayer formed by phosphatidylcholine molecules at air/liquid interface upon peroxidation conditions, promoted by peroxyl radicals from thermal decomposition of 2,2'-azobis(2-methylpropionamidine) (AAPH). The interaction with three different monolayers, containing (i) 1,2-dihexadecanoyl-sn-glycero-3-phosphocholine (DPPC), (ii) DDPC+α-linolenic acid, or (iii) egg yolk l-α-phosphatidylcholine (EPC), was ascertain by surface pressure (π)-molecular area (A) isotherms and by monitoring monolayer features through Brewster angle microscopy (BAM). The interaction of antioxidants with DPPC monolayers was confirmed by modifications on DPPC domain shape for α-tocopherol and through the maintenance of typical multilobed domain shape during an extended surface pressure interval for Trolox. Under peroxidation conditions, BAM images showed a clear interaction between components of AAPH subphase with the monolayer through changes on DPPC domain shape and appearance of white dots, located mainly at the frontier between the condensed and expanded liquid phases. White branched structures were also observed whenever both α-linolenic acid and α-tocopherol were present, indicating the segregation of these components within the monolayer, which is highly significant in biological systems. For EPC monolayers, no information from BAM was obtained but π-A isotherms confirmed the existence of the same interactions observed within the other two monolayers.


Subject(s)
1,2-Dipalmitoylphosphatidylcholine/chemistry , Chromans/chemistry , Lipid Peroxidation , Microscopy/methods , alpha-Tocopherol/chemistry , Animals , Elastic Modulus , Pressure , Temperature
20.
Biochim Biophys Acta ; 1828(2): 896-905, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23022131

ABSTRACT

This work focuses on the interaction of mycolic acids (MAs) and two antimycobacterial compounds (Rifabutin and N'-acetyl-Rifabutin) at the pulmonary membrane level to convey a biophysical perspective of their role in disease. For this purpose, accurate biophysical techniques (Langmuir isotherms, Brewster angle microscopy, and polarization-modulation infrared reflection spectroscopy) and lipid model systems were used to mimic biomembranes: MAs mimic bacterial lipids of the Mycobacterium tuberculosis (MTb) membrane, whereas Curosurf® was used as the human pulmonary surfactant (PS) membrane model. The results obtained show that high quantities of MAs are responsible for significant changes on PS biophysical properties. At the dynamic inspiratory surface tension, high amounts of MAs decrease the order of the lipid monolayer, which appears to be a concentration dependent effect. These results suggest that the amount of MAs might play a critical role in the initial access of the bacteria to their targets. Both molecules also interact with the PS monolayer at the dynamic inspiratory surface. However, in the presence of higher amounts of MAs, both compounds improve the phospholipid packing and, therefore, the order of the lipid surfactant monolayer. In summary, this work discloses the putative protective effects of antimycobacterial compounds against the MAs induced biophysical impairment of PS lipid monolayers. These protective effects are most of the times overlooked, but can constitute an additional therapeutic value in the treatment of pulmonary tuberculosis (Tb) and may provide significant insights for the design of new and more efficient anti-Tb drugs based on their behavior as membrane ordering agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biophysics/methods , Cell Membrane/chemistry , Mycolic Acids/chemistry , Pulmonary Surfactants/chemistry , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Antitubercular Agents/pharmacology , Biological Products/pharmacology , Epithelial Cells/cytology , Humans , Lipids/chemistry , Models, Chemical , Mycobacterium tuberculosis/metabolism , Phosphatidylserines/chemistry , Phospholipids/pharmacology , Pulmonary Alveoli/cytology , Rifabutin/pharmacology , Spectrophotometry/methods , Surface Properties , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...