Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38931427

ABSTRACT

Vanadium compounds are known to exert insulin-enhancing activity, normalize elevated blood glucose levels in diabetic subjects, and show significant activity in models of insulin resistance (IR). Faced with insulin resistance, the present work investigates the antidiabetic performance of a known oxidovanadium(IV)-based coordination compound-[VIVO(octd)]-and effects associated with glucocorticoid-induced insulin resistance in mice. The effects of [VIVO(octd)] were evaluated in a female Swiss mice model of insulin resistance induced by seven days of dexamethasone treatment in comparison with groups receiving metformin treatment. Biological assays such as hematological, TyG index, hepatic lipids, glycogen, oxidative stress in the liver, and oral glucose tolerance tests were evaluated. [VIVO(octd)] was characterized with 51V NMR, infrared spectroscopy (FTIR), electron paramagnetic resonance (EPR), electronic absorption spectroscopy, and mass spectrometry (ESI-FT-MS). The [VIVO(octd)] oral treatment (50 mg/kg) had an antioxidant effect, reducing 50% of fast blood glucose (p < 0.05) and 25% of the TyG index, which is used to estimate insulin resistance (p < 0.05), compared with the non-treated group. The oxidovanadium-sulfur compound is a promising antihyperglycemic therapeutic, including in cases aggravated by insulin resistance induced by glucocorticoid treatment.

2.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37765040

ABSTRACT

Polyoxovanadates (POV) are a subgroup of polyoxometalates (POM), which are nanosized clusters with reported biological activities. This manuscript describes the first toxicity evaluation of a mixed-valence polyoxovanadate, pentadecavanadate, (Me4N)6[V15O36Cl], abbreviated as V15. Cytotoxicity experiments using peripheral blood mononuclear cells (PBMC), larvae of Artemia salina Leach, and in vivo oral acute and repeated 28-day doses in mice was carried out. The LC50 values in PBMC cells and A. salina were 17.5 ± 5.8 µmol L-1, and 17.9 µg L-1, respectively, which indicates high cytotoxic activity. The toxicity in mice was not observed upon acute exposure in a single dose, however, the V15 repeated 28-day oral administration demonstrated high toxicity using 25 mg/kg, 50 mg/kg and, 300 mg/kg doses. The biochemical and hematological analyses during the 28-day administration of V15 showed significant alteration of the metabolic parameters related to the kidney and liver, suggesting moderate toxicity. The V15 toxicity was attributed to the oxidative stress and lipid peroxidation, once thiobarbituric acid (TBAR) levels significantly increased in both males and females treated with high doses of the POV and also in males treated with a lower dose of the POV. This is the first study reporting a treatment-related mortality in animals acutely administrated with a mixed-valence POV, contrasting with the well-known, less toxic decavanadate. These results document the toxicity of this mixed-valence POV, which may not be suitable for biomedical applications.

3.
J Inorg Biochem ; 241: 112127, 2023 04.
Article in English | MEDLINE | ID: mdl-36822888

ABSTRACT

This study describes the synthesis, characterization, and biological activity of a new class of antidiabetic oxidovanadium(IV)-complexes with S2O2 coordination mode. The target complex 3,6-dithio-1,8-octanediolatooxidovanadium(IV), abbreviated as ([VIVO(octd)]), where octd = 3,6-dithio-1,8-octanediol, is formed from the reaction between the 3,6-dithio-1,8-octanediol and vanadyl sulfate (VIVOSO4). The effects of treatment with ([VIVO(octd)] on blood glucose, lipidic profile, body weight, food intake, water intake, urinary volume, glycogen levels, and biomarkers for liver toxicity were investigated using a streptozotocin (STZ)-induced diabetic Wistar rats model. The results have shown that the [VIVO(octd)] complex caused a significant decrease in blood glucose (247.6 ± 19.3 mg/dL vs 430.1 ± 37.6 mg/dL diabetic group, p < 0.05), triglycerides (TG, 50%) and very low-density cholesterol (VLDL-C, 50%) levels in STZ-diabetic rats after 3 weeks of treatment. The [VIVO(octd)] has shown antihyperglycemic activity in diabetic rats as well as a reduction in elevated lipid levels. Time-dependent studies using EPR and 51V NMR spectroscopy of [VIVO(octd)] were done in aqueous solutions to determine the complex stability and species present in the oral gavage solution used for complex administration. The spectroscopic studies have shown that the antidiabetic/hypolipidemic activity could be attributed to [VIVO(octd)], vanadium species resulting from redox processes, the hydrolysis of [VIVO(octd)] and its decomposition products, or some combination of these factors. In summary, the oxidovanadium(IV) complex containing the S2O2 donor ligand has desirable antidiabetic properties eliminating the symptoms of Diabetes mellitus and its comorbidities.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemic Agents , Rats , Animals , Hypoglycemic Agents/pharmacology , Blood Glucose , Rats, Wistar , Vanadium/chemistry
4.
J Inorg Biochem ; 216: 111312, 2021 03.
Article in English | MEDLINE | ID: mdl-33388704

ABSTRACT

The insulin enhancing activity, histological analysis and, testicular degeneration by a VIVO-complex containing the 2,2'-(ethane-1,2-diylbis(azanediyl))diethanolate ligand, VOIV(C6H14N2O2-κ2N,κ2O), abbreviated VIVO(BHED), were investigated in diabetic male Wistar rats. The complex was administered by oral gavage of freshly prepared solutions of vanadium complex. Biological studies demonstrated that the vanadium complex normalized the elevated glucose levels in male Wistar rats with streptozotocin-induced diabetes and these compounds also avoided common responses in diabetic animals such as weight loss and reduction in the size of the epididymis, prostate, testis and seminal gland. The 51V NMR and EPR studies showed the formation of VIVO(BHED) and the oxidation product [VVO2BHED]- with two possible decomposition pathways. In summary, these studies demonstrate that the VIVO(BHED) complex or its decomposition products show similar effects as insulin in decreasing elevated blood glucose levels.


Subject(s)
Coordination Complexes , Diabetes Mellitus, Experimental/drug therapy , Diamines , Hypoglycemic Agents , Testicular Diseases/drug therapy , Testis , Vanadium , Animals , Atrophy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diamines/chemistry , Diamines/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Male , Rats , Rats, Wistar , Testicular Diseases/metabolism , Testicular Diseases/pathology , Testis/metabolism , Testis/pathology , Vanadium/chemistry , Vanadium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...