Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36146011

ABSTRACT

Poly(2,5-furandicarboxylate)s incorporating aliphatic moieties represent a promising family of polyesters, typically entirely based on renewable resources and with tailored properties, notably degradability. This study aims to go beyond by developing poly(isosorbide 2,5-furandicarboxylate-co-dodecanedioate) copolyesters derived from isosorbide (Is), 2,5-furandicarboxylic acid (FDCA), and 1,12-dodecanedioic acid (DDA), and studying their degradation under environmental conditions, often overlooked, namely seawater conditions. These novel polyesters have been characterized in-depth using ATR-FTIR, 1H, and 13C NMR and XRD spectroscopies and thermal analysis (TGA and DSC). They showed enhanced thermal stability (up to 330 °C), and the glass transition temperature increased with the content of FDCA from ca. 9 to 60 °C. Regarding their (bio)degradation, the enzymatic conditions lead to the highest weight loss compared to simulated seawater conditions, with values matching 27% vs. 3% weight loss after 63 days of incubation, respectively. Copolymerization of biobased FDCA, Is, and DDA represents an optimal approach for shaping the thermal/(bio)degradation behaviors of these novel polyesters.

2.
Waste Manag ; 101: 250-258, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31634811

ABSTRACT

Poly(ethylene terephthalate) (PET) and polypropylene (PP) are two major polymeric materials that constitute many single-use plastic products. A common strategy to reduce polymeric waste is via mechanical recycling, a low cost and efficient process. However, from an industrial point of view, the reliability of this process is more easily achieved by a downgrade in the final properties of these materials, which limits the usage of recycled-based materials to less demanding applications. Furthermore, due to the intrinsic heterogeneity of the PP or PET waste, the use of these materials in industrial processing, tuned and developed for virgin neat materials, poses serious integrity problems. This aspect is particularly relevant in the case of plastics originating from the food packaging industry. This work explores the possibility of incorporating either PP or PET originated from plastic solid waste (PSW), in pipe manufacturing, with competitive mechanical properties compared to those prepared from virgin materials. To achieve this industrial solution, a process was developed using PP/PET 70/30 wt% formulations and the impact of replacing the virgin material by the different PSW in the microstructure, thermal and mechanical properties of the final material was analyzed. The impact of using a compatibilizer able to counteract the natural immiscibility between the PP and PET domains was also assessed. The developed formulation with recycled PET is a good example of the applicability of work developed at a laboratory scale into industrial-scale production.


Subject(s)
Polyethylene , Water Pipe Smoking , Ethylenes , Phthalic Acids , Plastics , Polypropylenes , Recycling , Reproducibility of Results
3.
Mol Pharm ; 16(5): 2129-2141, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30986077

ABSTRACT

Incorporation of poly(ethylene glycol) (PEG) into polyplexes has been used as a promising approach to enhance their stability and reduce unwanted interactions with biomolecules. However, this strategy generally has a negative influence on cellular uptake and, consequently, on transfection of target cells. In this work, we explore the effect of PEGylation on biological and physicochemical properties of poly(2-aminoethyl methacrylate) (PAMA)-based polyplexes. For this purpose, different tailor-made PEG- b-PAMA block copolymers, and the respective homopolymers, were synthesized using the controlled/"living" radical polymerization method based on activators regenerated by electron transfer atom transfer radical polymerization. The obtained data show that PEG- b-PAMA-based polyplexes exhibited a much better transfection activity/cytotoxicity relationship than the corresponding non-PEGylated nanocarriers. The best formulation, prepared with the largest block copolymer (PEG45- b-PAMA168) at a 25:1 N/P ratio, presented a 350-fold higher transfection activity in the presence of serum than that obtained with polyplexes generated with the gold standard bPEI. This higher transfection activity was associated to an improved capability to overcome the intracellular barriers, namely the release from the endolysosomal pathway and the vector unpacking and consequent DNA release from the nanosystem inside cells. Moreover, these nanocarriers exhibit suitable physicochemical properties for gene delivery, namely reduced sizes, high DNA protection, and colloidal stability. Overall, these findings demonstrate the high potential of the PEG45- b-PAMA168 block copolymer as a gene delivery system.


Subject(s)
DNA/chemistry , Methacrylates/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Serum/chemistry , Transfection , Animals , COS Cells , Cell Survival/genetics , Chlorocebus aethiops , Drug Stability , Endocytosis/drug effects , Genetic Therapy , Genetic Vectors , Hep G2 Cells , Humans , Particle Size , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...