Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Oncol Rep ; 31(2): 679-86, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24297570

ABSTRACT

The expression levels of tissue factor (TF), the clotting initiator protein, have been correlated with angiogenesis and the histological grade of malignancy in glioma patients. The pro-tumor function of TF is linked to a family of G protein-coupled receptors known as protease-activated receptors (PARs), which may be activated by blood coagulation proteases. Activation of PARs elicits a number of responses, including the expression of vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8). In the present study, we analyzed the expression of TF signaling pathway elements (TF, PAR1 and PAR2) and evaluated their correlation with the expression of downstream products (VEGF and IL-8) in human astrocytoma patients. Quantitative PCR (qPCR) showed a significant increase in TF expression in grade IV (glioblastoma) tumors, which was inversely correlated with the expression of the tumor-suppressor PTEN. Immunohistochemistry and qPCR analyses demonstrated a highly significant elevation in the expression of PAR1, but not PAR2, in tumor samples from high-grade astrocytoma patients. The elevated VEGF expression levels detected in the high-grade astrocytoma samples were positively correlated with TF, PAR1 and PAR2 expression. In addition, IL-8 was significantly increased in glioblastoma patients and positively correlated with TF and PAR2 expression. Further in vitro assays employing the human glioma cell lines U87-MG and HOG demonstrated that a synthetic peptide PAR2 agonist stimulated VEGF and IL-8 production. Our findings suggest a role for TF signaling pathway elements in astrocytoma progression, particularly in glioblastoma. Therefore, TF/PAR signaling elements may be suitable targets for the development of new therapies for the treatment of aggressive glioma.


Subject(s)
Interleukin-8/biosynthesis , Receptor, PAR-1/biosynthesis , Receptor, PAR-2/biosynthesis , Thromboplastin/metabolism , Vascular Endothelial Growth Factors/biosynthesis , Brain Neoplasms/pathology , Glioblastoma/pathology , Humans , Interleukin-8/metabolism , Neovascularization, Pathologic , PTEN Phosphohydrolase/biosynthesis , Receptor, PAR-2/agonists , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL