Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Neuroscience ; 419: 5-13, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31491505

ABSTRACT

Disrupted neuronal intracellular trafficking is often related with protein aggregates present in the brain during neurodegenerative diseases such as Alzheimer's. Impairment of intracellular transport may be related to Rab proteins, a class of small GTPases responsible for trafficking of organelles and vesicles. Deficit in trafficking between the endoplasmic reticulum (ER) and Golgi apparatus mediated by Rab1 and 6 may lead to increased unfolded protein response (UPR) and ER stress and remodeling. Thus, the objective of this study is to analyze the levels of Rabs 1 and 6 in the hippocampus of aged rats and in vitro during protein aggregation promoted by exposure to rotenone. Levels of Rabs 1 and 6, ATF6 and CHOP were measured by western blotting. PDI immunolabeling and ER-Tracker were employed to study ER morphology. MTT was used to analyze cell metabolism. Rab1 levels and cell viability decreased, whereas Rab6, UPR proteins and ER remodeling increased during protein aggregation, which were restored to normal levels after exogenous expression of Rab1.These results suggest that decrease of Rab1 levels contributes to ER stress and remodeling, while maintaining the elevated expression of Rab1 prevented impairment of cell viability during protein aggregation. In conclusion, Rab1 is a significant player to maintain intracellular homeostasis and its expression may mitigate ER dysfunction in the context of neurodegeneration-related protein inclusions.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Endoplasmic Reticulum/metabolism , Hippocampus/metabolism , Rotenone/pharmacology , rab1 GTP-Binding Proteins/metabolism , Animals , Cell Line , Golgi Apparatus/metabolism , Neurons/metabolism , Protein Aggregates , Protein Transport/physiology , Rats
2.
J Sports Sci ; 36(12): 1363-1370, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28895489

ABSTRACT

Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8 weeks) and 6 weeks of moderate treadmill running, beginning 4 weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.


Subject(s)
Neurodegenerative Diseases/physiopathology , Physical Conditioning, Animal , Running , Substantia Nigra/pathology , Animals , Autophagy , Disease Models, Animal , Hydrogen Peroxide/metabolism , Male , Mitophagy , Proteasome Endopeptidase Complex/metabolism , Rats, Inbred Lew , Rotenone/toxicity , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism
3.
J. Sports Sci. ; 36(12): p. 1363-1370, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15003

ABSTRACT

Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8weeks) and 6weeks of moderate treadmill running, beginning 4weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.

4.
J Sports Sci, v. 36, n. 12, p. 1363-1370, 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2449

ABSTRACT

Moderate physical exercise acts at molecular and behavioural levels, such as interfering in neuroplasticity, cell death, neurogenesis, cognition and motor functions. Therefore, the aim of this study is to analyse the cellular effects of moderate treadmill running upon substantia nigra during early neurodegeneration. Aged male Lewis rats (9-month-old) were exposed to rotenone 1mg/kg/day (8weeks) and 6weeks of moderate treadmill running, beginning 4weeks after rotenone exposure. Substantia nigra was extracted and submitted to proteasome and antioxidant enzymes activities, hydrogen peroxide levels and Western blot to evaluate tyrosine hydroxylase (TH), alpha-synuclein, Tom-20, PINK1, TrkB, SLP1, CRMP-2, Rab-27b, LC3II and Beclin-1 level. It was demonstrated that moderate treadmill running, practiced during early neurodegeneration, prevented the increase of alpha-synuclein and maintained the levels of TH unaltered in substantia nigra of aged rats. Physical exercise also stimulated autophagy and prevented impairment of mitophagy, but decreased proteasome activity in rotenone-exposed aged rats. Physical activity also prevented H2O2 increase during early neurodegeneration, although the involved mechanism remains to be elucidated. TrkB levels and its anterograde trafficking seem not to be influenced by moderate treadmill running. In conclusion, moderate physical training could prevent early neurodegeneration in substantia nigra through the improvement of autophagy and mitophagy.

SELECTION OF CITATIONS
SEARCH DETAIL
...