Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Clin Nutr ; 43(8): 1914-1928, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39003957

ABSTRACT

BACKGROUND: Mitochondrial dysfunction occurs in monocytes during obesity and contributes to a low-grade inflammatory state; therefore, maintaining good mitochondrial conditions is a key aspect of maintaining health. Dietary interventions are primary strategies for treating obesity, but little is known about their impact on monocyte bioenergetics. Thus, the aim of this study was to evaluate the effects of calorie restriction (CR), intermittent fasting (IF), a ketogenic diet (KD), and an ad libitum habitual diet (AL) on mitochondrial function in monocytes and its modulation by the gut microbiota. METHODS AND FINDINGS: A randomized controlled clinical trial was conducted in which individuals with obesity were assigned to one of the 4 groups for 1 month. Subsequently, the subjects received rifaximin and continued with the assigned diet for another month. The oxygen consumption rate (OCR) was evaluated in isolated monocytes, as was the gut microbiota composition in feces and anthropometric and biochemical parameters. Forty-four subjects completed the study, and those who underwent CR, IF and KD interventions had an increase in the maximal respiration OCR (p = 0.025, n2p = 0.159 [0.05, 0.27] 95% confidence interval) in monocytes compared to that in the AL group. The improvement in mitochondrial function was associated with a decrease in monocyte dependence on glycolysis after the IF and KD interventions. Together, diet and rifaximin increased the gut microbiota diversity in the IF and KD groups (p = 0.0001), enriched the abundance of Phascolarctobacterium faecium (p = 0.019) in the CR group and Ruminococcus bromii (p = 0.020) in the CR and KD groups, and reduced the abundance of lipopolysaccharide (LPS)-producing bacteria after CR, IF and KD interventions compared to the AL group at the end of the study according to ANCOVA with covariate adjustment. Spearman's correlation between the variables measured highlighted LPS as a potential modulator of the observed effects. In line with this findings, serum LPS and intracellular signaling in monocytes decreased with the three interventions (CR, p = 0.002; IF, p = 0.001; and KD, p = 0.001) compared to those in the AL group at the end of the study. CONCLUSIONS: We conclude that these dietary interventions positively regulate mitochondrial bioenergetic health and improve the metabolic profile of monocytes in individuals with obesity via modulation of the gut microbiota. Moreover, the evaluation of mitochondrial function in monocytes could be used as an indicator of metabolic and inflammatory status, with potential applications in future clinical trials. TRIAL REGISTRATION: This trial was registered with ClinicalTrials.gov (NCT05200468).

2.
FEBS Open Bio ; 14(5): 726-739, 2024 May.
Article in English | MEDLINE | ID: mdl-38514457

ABSTRACT

Taenia solium can cause human taeniasis and/or cysticercosis. The latter can in some instances cause human neurocysticercosis which is considered a priority in disease-control strategies and the prevention of mental health problems. Glutathione transferases are crucial for the establishment and long-term survival of T. solium; therefore, we structurally analyzed the 24-kDa glutathione transferase gene (Ts24gst) of T. solium and biochemically characterized its product. The gene promoter showed potential binding sites for transcription factors and xenobiotic regulatory elements. The gene consists of a transcription start site, four exons split by three introns, and a polyadenylation site. The gene architecture is conserved in cestodes. Recombinant Ts24GST (rTs24GST) was active and dimeric. Anti-rTs24GST serum showed slight cross-reactivity with human sigma-class GST. A 3D model of Ts24GST enabled identification of putative residues involved in interactions of the G-site with GSH and of the H-site with CDNB and prostaglandin D2. Furthermore, rTs24GST showed optimal activity at 45 °C and pH 9, as well as high structural stability in a wide range of temperatures and pHs. These results contribute to the better understanding of this parasite and the efforts directed to fight taeniasis/cysticercosis.


Subject(s)
Glutathione Transferase , Taenia solium , Taenia solium/genetics , Taenia solium/enzymology , Animals , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Glutathione Transferase/chemistry , Humans , Models, Molecular , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Promoter Regions, Genetic/genetics
3.
Plant Mol Biol ; 111(3): 309-328, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36581792

ABSTRACT

Environmental contamination by xenobiotics represents a major threat for natural ecosystems and public health. In response, xenobiotic detoxification is a fundamental trait of organisms for developmental plasticity and stress tolerance, but the underlying molecular mechanisms remain poorly understood in plants. To decipher this process, we explored the consequences of allopolyploidy on xenobiotic tolerance in the genus Spartina Schreb. Specifically, we focused on microRNAs (miRNAs) owing to their central function in the regulation of gene expression patterns, including responses to stress. Small RNA-Seq was conducted on the parents S. alterniflora and S. maritima, their F1 hybrid S. x townsendii and the allopolyploid S. anglica under phenanthrene-induced stress (phe), a model Polycyclic Aromatic Hydrocarbon (PAH) compound. Differentially expressed miRNAs in response to phe were specifically identified within species. In complement, the respective impacts of hybridization and genome doubling were detected, through changes in miRNA expression patterns between S. x townsendii, S. anglica and the parents. The results support the impact of allopolyploidy in miRNA-guided regulation of plant response to phe. In total, we identified 17 phe-responsive miRNAs in Spartina among up-regulated MIR156 and down-regulated MIR159. We also describe novel phe-responsive miRNAs as putative Spartina-specific gene expression regulators in response to stress. Functional validation using Arabidopsis (L.) Heynh. T-DNA lines inserted in homologous MIR genes was performed, and the divergence of phe-responsive miRNA regulatory networks between Arabidopsis and Spartina was discussed.


Subject(s)
Arabidopsis , MicroRNAs , Xenobiotics , Ecosystem , Arabidopsis/genetics , Hybridization, Genetic , Poaceae/genetics , MicroRNAs/genetics , Gene Expression Regulation, Plant
4.
Hum Mol Genet ; 31(3): 386-398, 2022 02 03.
Article in English | MEDLINE | ID: mdl-34494094

ABSTRACT

Expanded CAG/CTG repeat disorders affect over 1 in 2500 individuals worldwide. Potential therapeutic avenues include gene silencing and modulation of repeat instability. However, there are major mechanistic gaps in our understanding of these processes, which prevent the rational design of an efficient treatment. To address this, we developed a novel system, ParB/ANCHOR-mediated Inducible Targeting (PInT), in which any protein can be recruited at will to a GFP reporter containing an expanded CAG/CTG repeat. Previous studies have implicated the histone deacetylase HDAC5 and the DNA methyltransferase DNMT1 as modulators of repeat instability via mechanisms that are not fully understood. Using PInT, we found no evidence that HDAC5 or DNMT1 modulate repeat instability upon targeting to the expanded repeat, suggesting that their effect is independent of local chromatin structure. Unexpectedly, we found that expanded CAG/CTG repeats reduce the effectiveness of gene silencing mediated by targeting HDAC5 and DNMT1. The repeat-length effect in gene silencing by HDAC5 was abolished by a small molecule inhibitor of HDAC3. Our results have important implications on the design of epigenome editing approaches for expanded CAG/CTG repeat disorders. PInT is a versatile synthetic system to study the effect of any sequence of interest on epigenome editing.


Subject(s)
Epigenome , Trinucleotide Repeat Expansion , Gene Silencing , Humans , Trinucleotide Repeats
5.
Front Genet ; 12: 589160, 2021.
Article in English | MEDLINE | ID: mdl-33841492

ABSTRACT

Gene expression dynamics is a key component of polyploid evolution, varying in nature, intensity, and temporal scales, most particularly in allopolyploids, where two or more sub-genomes from differentiated parental species and different repeat contents are merged. Here, we investigated transcriptome evolution at different evolutionary time scales among tetraploid, hexaploid, and neododecaploid Spartina species (Poaceae, Chloridoideae) that successively diverged in the last 6-10 my, at the origin of differential phenotypic and ecological traits. Of particular interest are the recent (19th century) hybridizations between the two hexaploids Spartina alterniflora (2n = 6x = 62) and S. maritima (2n = 6x = 60) that resulted in two sterile F1 hybrids: Spartina × townsendii (2n = 6x = 62) in England and Spartina × neyrautii (2n = 6x = 62) in France. Whole genome duplication of S. × townsendii gave rise to the invasive neo-allododecaploid species Spartina anglica (2n = 12x = 124). New transcriptome assemblies and annotations for tetraploids and the enrichment of previously published reference transcriptomes for hexaploids and the allododecaploid allowed identifying 42,423 clusters of orthologs and distinguishing 21 transcribed transposable element (TE) lineages across the seven investigated Spartina species. In 4x and 6x mesopolyploids, gene and TE expression changes were consistent with phylogenetic relationships and divergence, revealing weak expression differences in the tetraploid sister species Spartina bakeri and Spartina versicolor (<2 my divergence time) compared to marked transcriptome divergence between the hexaploids S. alterniflora and S. maritima that diverged 2-4 mya. Differentially expressed genes were involved in glycolysis, post-transcriptional protein modifications, epidermis development, biosynthesis of carotenoids. Most detected TE lineages (except SINE elements) were found more expressed in hexaploids than in tetraploids, in line with their abundance in the corresponding genomes. Comparatively, an astonishing (52%) expression repatterning and deviation from parental additivity were observed following recent reticulate evolution (involving the F1 hybrids and the neo-allododecaploid S. anglica), with various patterns of biased homoeologous gene expression, including genes involved in epigenetic regulation. Downregulation of TEs was observed in both hybrids and accentuated in the neo-allopolyploid. Our results reinforce the view that allopolyploidy represents springboards to new regulatory patterns, offering to worldwide invasive species, such as S. anglica, the opportunity to colonize stressful and fluctuating environments on saltmarshes.

6.
Plant Sci ; 302: 110671, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33288000

ABSTRACT

Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species. We examined whether differential genome size evolution correlated with ploidy levels and phylogenetic relationships. We also examined the tempo of repeat sequence dynamics associated with allopatric speciation over the last 3-6 million years between hexaploid species that diverged on the American and European Atlantic coasts and tetraploid species from North and South America. The tetraploid S. spartinae, whose phylogenetic placement has been debated, exhibits a similar repeat content as hexaploid species, suggesting common ancestry. Genome expansion or contraction resulting from repeat dynamics seems to be explained mostly by the contrasting divergence times between species, rather than by genome changes triggered by ploidy level change per se. One 370 bp satellite may be exhibiting 'meiotic drive' and driving chromosome evolution in S. alterniflora. Our results provide crucial insights for investigating the genetic and epigenetic consequences of such differential repeat dynamics on the ecology and distribution of the meso- and neopolyploid Spartina species.


Subject(s)
DNA Transposable Elements/genetics , DNA, Satellite/genetics , Evolution, Molecular , Poaceae/genetics , Polyploidy , Blotting, Southern , Genome, Plant/genetics , High-Throughput Nucleotide Sequencing , Phylogeny
7.
Hist Cienc Saude Manguinhos ; 27(2): 355-373, 2020 Jun.
Article in English, Portuguese | MEDLINE | ID: mdl-32667605

ABSTRACT

The article aims to understand the development of the way deaths are accounted for in Brazil and its influence on how we perceive death. The rationality of registration systems is analyzed, considering their role in population control. The way successive governments have created and developed these monitoring mechanisms is then investigated, considering the modernizing process through which the country has passed since the end of the nineteenth century. Finally, the arrangement of the categories on the death certificate is described, along with how, through this document, an inquisitive technology that distributes rights and duties between actors and establishes the preliminary elements for a given social organization of death works, focusing on the city of Belo Horizonte.

8.
Hist. ciênc. saúde-Manguinhos ; 27(2): 355-373, abr.-jun. 2020. graf
Article in Portuguese | LILACS | ID: biblio-1134061

ABSTRACT

Resumo O artigo visa compreender a formação da contabilidade dos óbitos no Brasil e sua influência no modo como percebemos a morte. Para tanto, analisamos a racionalidade dos sistemas de registro, considerando o seu papel de controle populacional. Em seguida, investigamos como os sucessivos governos criaram e desenvolveram esses mecanismos de monitoramento, considerando o processo modernizador pelo qual o país passa desde finais do século XIX. Por fim, delineamos a disposição das categorias da declaração de óbito e como, por meio desse documento, funciona uma tecnologia inquisitiva que distribui direitos e deveres entre atores e estabelece os elementos preliminares de uma organização social da morte, tendo como campo a cidade de Belo Horizonte.


Abstract The article aims to understand the development of the way deaths are accounted for in Brazil and its influence on how we perceive death. The rationality of registration systems is analyzed, considering their role in population control. The way successive governments have created and developed these monitoring mechanisms is then investigated, considering the modernizing process through which the country has passed since the end of the nineteenth century. Finally, the arrangement of the categories on the death certificate is described, along with how, through this document, an inquisitive technology that distributes rights and duties between actors and establishes the preliminary elements for a given social organization of death works, focusing on the city of Belo Horizonte.


Subject(s)
Death Certificates , Mortality , Population Control , Death , Brazil
9.
Plant Mol Biol ; 102(1-2): 55-72, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31748889

ABSTRACT

KEY MESSAGE: Differential expression of mi-RNAs targeting developmental processes and progressive downregulation of repeat-associated siRNAs following genome merger and genome duplication in the context of allopolyploid speciation in Spartina. The role of small RNAs on gene expression regulation and genome stability is arousing increased interest and is being explored in various plant systems. In spite of prominence of reticulate evolution and polyploidy that affects the evolutionary history of all plant lineages, very few studies analysed RNAi mechanisms with this respect. Here, we explored small RNAs diversity and expression in the context of recent allopolyploid speciation, using the Spartina system, which offers a unique opportunity to explore the immediate changes following hybridization and genome duplication. Small RNA-Seq analyses were conducted on hexaploid parental species (S. alterniflora and S. maritima), their F1 hybrid S. x townsendii, and the neoallododecaploid S. anglica. We identified 594 miRNAs, 2197 miRNA-target genes, and 3730 repeat-associated siRNAs (mostly targeting Class I/Copia-Ivana- Copia-SIRE and LINEs elements). For both mi- and ra-siRNAs, we detected differential expression patterns following genome merger and genome duplication. These misregulations include non-additive expression of miRNAs in the F1 hybrid and additional changes in the allopolyploid targeting developmental processes. Expression of repeat-associated siRNAs indicates a strengthen of transposable element repression during the allopolyploidization process. Altogether, these results confirm the central role small RNAs play in shaping regulatory changes in naturally formed recent allopolyploids.


Subject(s)
Gene Expression Regulation, Plant , Hybridization, Genetic , MicroRNAs/genetics , MicroRNAs/metabolism , Poaceae/genetics , Poaceae/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , Base Sequence , DNA Transposable Elements , DNA, Plant , Genes, Plant/genetics , Genome, Plant , Genomic Instability , Molecular Sequence Annotation , Polyploidy
10.
Hist. ciênc. saúde-Manguinhos ; 27(2): 355-373, abr.-jun. 2020. il
Article in Portuguese | HISA - History of Health | ID: his-44330

ABSTRACT

O artigo visa compreender a formação da contabilidade dos óbitos no Brasil e sua influência no modo como percebemos a morte. Para tanto, analisamos a racionalidade dos sistemas de registro, considerando o seu papel de controle populacional. Em seguida, investigamos como os sucessivos governos criaram e desenvolveram esses mecanismos de monitoramento, considerando o processo modernizador pelo qual o país passa desde finais do século XIX. Por fim, delineamos a disposição das categorias da declaração de óbito e como, por meio desse documento, funciona uma tecnologia inquisitiva que distribui direitos e deveres entre atores e estabelece os elementos preliminares de uma organização social da morte, tendo como campo a cidade de Belo Horizonte


Subject(s)
Humans , Mortality , Mortality Registries , Death Certificates , Death , Population Control , Brazil
11.
Plant Sci ; 280: 143-154, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30823992

ABSTRACT

Genome doubling or polyploidy is a widespread phenomenon in plants where it has important evolutionary consequences affecting the species distribution and ecology. PAHs are ubiquitous organic pollutants, which represent a major environmental concern. Recent data showed that tolerance to organic xenobiotics involve specific signaling pathways, and detoxifying gene sets referred as 'the xenome'. However, no data are available about how polyploidy impacts tolerance to organic xenobiotics. In the present paper, we investigated PAH tolerance following allopolyploidization in Spartina alterniflora, S. maritima and their derived allopolyploid species S. anglica. We performed comparative analyses of cellular compartmentalization, photosynthetic indices, and oxidative stress markers under phenanthrene-induced stress, and found that S. anglica exhibit increased tolerance compared to its parents. Based on 52 genes potentially involved in phenanthrene detoxification previously identified in A. thaliana, we investigated the Spartina xenome using genomic and transcriptomic available resources. Subsequently, we focused on GSTs, a ubiquitous enzymes class involved in organic xenobiotic detoxification. We examined expression profiles of selected genes by RT-qPCR, and revealed various patterns of parental expression alteration in the allopolyploid. The impacts of allopolyploidization on phenanthrene-induced stress and their potential ecological implications are discussed. The neo-allopolyploid S. anglica appears as a potential candidate for phytoremediation in PAH-polluted marshes.


Subject(s)
Poaceae/drug effects , Xenobiotics/pharmacology , Genome, Plant/drug effects , Genome, Plant/genetics , Poaceae/genetics , Polyploidy , Sequence Analysis, DNA
12.
Ecol Evol ; 8(10): 4992-5007, 2018 May.
Article in English | MEDLINE | ID: mdl-29876076

ABSTRACT

Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter- and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter- and intrapopulation phenotypic variability of 33 plant traits (using field and common-garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within-population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common-garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea-level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.

13.
FEBS Lett ; 590(14): 2286-96, 2016 07.
Article in English | MEDLINE | ID: mdl-27314815

ABSTRACT

Scorpine-like peptides are two domain peptides found in different scorpion venoms displaying various antimicrobial, cytolytic, and potassium channel-blocking activities. The relative contribution of each domain to their different activities remains to be elucidated. Here, we report the recombinant production, solution structure, and antiparasitic activity of Hge36, first identified as a naturally occurring truncated form of a Scorpine-like peptide from the venom of Hoffmannihadrurus gertschi. We also show that removing the first four residues from Hge36 renders a molecule with enhanced potassium channel-blocking and antiparasitic activities. Our results are important to rationalize the structure-function relationships of a pharmacologically versatile molecular scaffold.


Subject(s)
Antiparasitic Agents/chemistry , Arthropod Proteins/chemistry , Peptides/chemistry , Scorpion Venoms/chemistry , Scorpions/chemistry , Animals , Antiparasitic Agents/pharmacology , Arthropod Proteins/pharmacology , Peptides/pharmacology , Protein Structure, Secondary , Scorpion Venoms/pharmacology , Taenia/growth & development
14.
PLoS One ; 10(11): e0141818, 2015.
Article in English | MEDLINE | ID: mdl-26529408

ABSTRACT

TATA-box binding protein (TBP) is an essential regulatory transcription factor for the TATA-box and TATA-box-less gene promoters. We report the cloning and characterization of a full-length cDNA that encodes a Taenia solium TATA-box binding protein 1 (TsTBP1). Deduced amino acid composition from its nucleotide sequence revealed that encodes a protein of 238 residues with a predicted molecular weight of 26.7 kDa, and a theoretical pI of 10.6. The NH2-terminal domain shows no conservation when compared with to pig and human TBP1s. However, it shows high conservation in size and amino acid identity with taeniids TBP1s. In contrast, the TsTBP1 COOH-terminal domain is highly conserved among organisms, and contains the amino acids involved in interactions with the TATA-box, as well as with TFIIA and TFIIB. In silico TsTBP1 modeling reveals that the COOH-terminal domain forms the classical saddle structure of the TBP family, with one α-helix at the end, not present in pig and human. Native TsTBP1 was detected in T. solium cysticerci´s nuclear extract by western blot using rabbit antibodies generated against two synthetic peptides located in the NH2 and COOH-terminal domains of TsTBP1. These antibodies, through immunofluorescence technique, identified the TBP1 in the nucleus of cells that form the bladder wall of cysticerci of Taenia crassiceps, an organism close related to T. solium. Electrophoretic mobility shift assays using nuclear extracts from T. solium cysticerci and antibodies against the NH2-terminal domain of TsTBP1 showed the interaction of native TsTBP1 with the TATA-box present in T. solium actin 5 (pAT5) and 2-Cys peroxiredoxin (Ts2-CysPrx) gene promoters; in contrast, when antibodies against the anti-COOH-terminal domain of TsTBP1 were used, they inhibited the binding of TsTBP1 to the TATA-box of the pAT5 promoter gene.


Subject(s)
Actins/metabolism , Peroxiredoxins/metabolism , Protozoan Proteins/metabolism , TATA Box , TATA-Box Binding Protein/metabolism , Taenia solium/metabolism , Actins/chemistry , Actins/genetics , Animals , Cell Nucleus/chemistry , Cell Nucleus/genetics , Cell Nucleus/metabolism , Computer Simulation , Genes, Protozoan , Humans , Peroxiredoxins/chemistry , Peroxiredoxins/genetics , Protein Binding , Protein Structure, Tertiary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Rabbits , TATA-Box Binding Protein/chemistry , TATA-Box Binding Protein/genetics , Taenia solium/chemistry , Taenia solium/genetics
15.
G3 (Bethesda) ; 6(1): 29-40, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26530424

ABSTRACT

Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5'-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies.


Subject(s)
Haplotypes , High-Throughput Nucleotide Sequencing , Phylogeny , Poaceae/classification , Poaceae/genetics , Polyploidy , Computational Biology/methods , DNA, Ribosomal , Genes, Plant , Genome, Plant , Genomics/methods , In Situ Hybridization, Fluorescence , Molecular Sequence Annotation , Open Reading Frames , Polymorphism, Single Nucleotide , RNA, Ribosomal/genetics , Reproducibility of Results
16.
Biomed Res Int ; 2015: 453469, 2015.
Article in English | MEDLINE | ID: mdl-26090410

ABSTRACT

Taenia solium thioredoxin-1 gene (TsTrx-1) has a length of 771 bp with three exons and two introns. The core promoter gene presents two putative stress transcription factor binding sites, one putative TATA box, and a transcription start site (TSS). TsTrx-1 mRNA is expressed higher in larvae than in adult. This gene encodes a protein of 107 amino acids that presents the Trx active site (CGPC), the classical secondary structure of the thioredoxin fold, and the highest degree of identity with the Echinococcus granulosus Trx. A recombinant TsTrx-1 (rTsTrx-1) was produced in Escherichia coli with redox activity. Optimal activity for rTsTrx-1 was at pH 6.5 in the range of 15 to 25°C. The enzyme conserved activity for 3 h and lost it in 24 h at 37°C. rTsTrx-1 lost 50% activity after 1 h and lost activity completely in 24 h at temperatures higher than 55°C. Best storage temperature for rTsTrx-1 was at -70°C. It was inhibited by high concentrations of H2O2 and methylglyoxal (MG), but it was inhibited neither by NaCl nor by anti-rTsTrx-1 rabbit antibodies that strongly recognized a ~12 kDa band in extracts from several parasites. These TsTrx-1 properties open the opportunity to study its role in relationship T. solium-hosts.


Subject(s)
Cysticercosis/genetics , Host-Parasite Interactions , Taenia solium/genetics , Thioredoxins/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Cysticercosis/pathology , Cysticercosis/veterinary , Humans , Protein Structure, Secondary , Swine , Taenia solium/pathogenicity , Thioredoxins/biosynthesis , Thioredoxins/chemistry
17.
Environ Sci Pollut Res Int ; 22(20): 15347-59, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25561256

ABSTRACT

The impact of petroleum contamination and of burrowing macrofauna on abundances of Marinobacter and denitrifiers was tested in marine sediment mesocoms after 3 months incubation. Quantification of this genus by qPCR with a new primer set showed that the main factor favoring Marinobacter abundance was hydrocarbon amendment followed by macrofauna presence. In parallel, proportion of nosZ-harboring bacteria increased in the presence of marcrofauna. Quantitative finding were explained by physiological data from a set of 34 strains and by genomic analysis of 16 genomes spanning 15 different Marinobacter-validated species (Marinobacter hydrocarbonoclasticus, Marinobacter daeopensis, Marinobacter santoriniensis, Marinobacter pelagius, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter xestospongiae, Marinobacter algicola, Marinobacter vinifirmus, Marinobacter maritimus, Marinobacter psychrophilus, Marinobacter lipoliticus, Marinobacter manganoxydans, Marinobacter excellens, Marinobacter nanhaiticus) and 4 potential novel ones. Among the 105 organic electron donors tested in physiological analysis, Marinobacter pattern appeared narrow for almost all kinds of organic compounds except lipid ones. Strains of this set could oxidize a very large spectrum of lipids belonging to glycerolipids, branched, fatty acyls, and aromatic hydrocarbon classes. Physiological data were comforted by genomic analysis, and genes of alkane 1-monooxygenase, haloalkane dehalogenase, and flavin-binding monooxygenase were detected in most genomes. Denitrification was assessed for several strains belonging to M. hydrocarbonoclasticus, M. vinifirmus, Marinobacter maritinus, and M. pelagius species indicating the possibility to use nitrate as alternative electron acceptor. Higher occurrence of Marinobacter in the presence of petroleum appeared to be the result of a broader physiological trait allowing this genus to use lipids including hydrocarbon as principal electron donors.


Subject(s)
Hydrocarbons/metabolism , Lipid Metabolism , Marinobacter/metabolism , Petroleum Pollution , Genome, Bacterial , Geologic Sediments/microbiology , Marinobacter/genetics , Marinobacter/isolation & purification , Phylogeny
18.
Ann Bot ; 113(7): 1197-210, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24769537

ABSTRACT

BACKGROUND AND AIMS: To date chloroplast genomes are available only for members of the non-protein amino acid-accumulating clade (NPAAA) Papilionoid lineages in the legume family (i.e. Millettioids, Robinoids and the 'inverted repeat-lacking clade', IRLC). It is thus very important to sequence plastomes from other lineages in order to better understand the unusual evolution observed in this model flowering plant family. To this end, the plastome of a lupine species, Lupinus luteus, was sequenced to represent the Genistoid lineage, a noteworthy but poorly studied legume group. METHODS: The plastome of L. luteus was reconstructed using Roche-454 and Illumina next-generation sequencing. Its structure, repetitive sequences, gene content and sequence divergence were compared with those of other Fabaceae plastomes. PCR screening and sequencing were performed in other allied legumes in order to determine the origin of a large inversion identified in L. luteus. KEY RESULTS: The first sequenced Genistoid plastome (L. luteus: 155 894 bp) resulted in the discovery of a 36-kb inversion, embedded within the already known 50-kb inversion in the large single-copy (LSC) region of the Papilionoideae. This inversion occurs at the base or soon after the Genistoid emergence, and most probably resulted from a flip-flop recombination between identical 29-bp inverted repeats within two trnS genes. Comparative analyses of the chloroplast gene content of L. luteus vs. Fabaceae and extra-Fabales plastomes revealed the loss of the plastid rpl22 gene, and its functional relocation to the nucleus was verified using lupine transcriptomic data. An investigation into the evolutionary rate of coding and non-coding sequences among legume plastomes resulted in the identification of remarkably variable regions. CONCLUSIONS: This study resulted in the discovery of a novel, major 36-kb inversion, specific to the Genistoids. Chloroplast mutational hotspots were also identified, which contain novel and potentially informative regions for molecular evolutionary studies at various taxonomic levels in the legumes. Taken together, the results provide new insights into the evolutionary landscape of the legume plastome.


Subject(s)
Evolution, Molecular , Genome, Chloroplast , Lupinus/genetics , Lupinus/classification , Molecular Sequence Data , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA
19.
Biodegradation ; 24(2): 203-13, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22991035

ABSTRACT

Assessing in situ microbial abilities of soils to degrade pesticides is of great interest giving insight in soil filtering capability, which is a key ecosystem function limiting pollution of groundwater. Quantification of pesticide-degrading gene expression by reverse transcription quantitative PCR (RT-qPCR) was tested as a suitable indicator to monitor pesticide biodegradation performances in soil. RNA extraction protocol was optimized to enhance the yield and quality of RNA recovered from soil samples to perform RT-qPCR assays. As a model, the activity of atrazine-degrading communities was monitored using RT-qPCRs to estimate the level of expression of atzD in five agricultural soils showing different atrazine mineralization abilities. Interestingly, the relative abundance of atzD mRNA copy numbers was positively correlated to the maximum rate and to the maximal amount of atrazine mineralized. Our findings indicate that the quantification of pesticide-degrading gene expression may be suitable to assess biodegradation performance in soil and monitor natural attenuation of pesticide.


Subject(s)
Pesticides/metabolism , Atrazine/metabolism , Biodegradation, Environmental , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Soil Microbiology
20.
J Microbiol Methods ; 86(2): 255-7, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21640142

ABSTRACT

Gene transfer frequency can be determined experimentally on plates, but the methods currently in use do not discriminate between independent transfers and clonal multiplication of initial transformants. In order to overcome this bias, we engineered an Acinetobacter baylyi population in which cells differed by a specific molecular signature and used it as recipient in transformation experiments. Our results suggest that a corrective factor of 0.52 should be applied in order to accurately report natural transformation when using the plate counting method.


Subject(s)
Acinetobacter/genetics , Gene Transfer Techniques , Gene Transfer, Horizontal , Genetics, Microbial/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...