Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Contemp Dent Pract ; 25(3): 207-212, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690691

ABSTRACT

AIM: This longitudinal study aimed to evaluate the electromyographic activity of the masseter and temporal muscles in adult women who underwent buccal fat removal. MATERIALS AND METHODS: The sample consisted of 20 healthy adult women with no temporomandibular dysfunction and normal occlusion, who were assessed before, 30, and 60 days after the surgery. The electromyographic signal of the masseter and temporal muscles was captured through mandibular tasks including rest, protrusion, right and left laterality, and maximum voluntary contraction with and without parafilm. The results obtained were tabulated and the Shapiro-Wilk normality test was performed, which indicated a normal distribution. Statistical analysis was performed using the repeated measures test (p < 0.05). RESULTS: Significant differences were observed between time periods in maximum voluntary contraction for the left masseter muscle (p = 0.006) and in maximum voluntary contraction with parafilm for the right temporal (p = 0.03) and left temporal (p = 0.03) muscles. CONCLUSION: Bichectomy surgery did not modify the electromyographic activity of the masseter and temporal muscles during the rest task but may have influenced variations in the electromyographic signal during different mandibular tasks after 60 days of surgery, suggesting compensatory adaptations and functional recovery. CLINICAL SIGNIFICANCE: Understanding the impact of buccal fat removal surgery on the stomatognathic system function provides insights into postoperative functional recovery and potential compensatory adaptations, guiding clinical management and rehabilitation strategies for patients undergoing such procedures. How to cite this article: Cardoso AHDLS, Palinkas M, Bettiol NB, et al. Bichectomy Surgery and EMG Masticatory Muscles Function in Adult Women: A Longitudinal Study. J Contemp Dent Pract 2024;25(3):207-212.


Subject(s)
Electromyography , Masseter Muscle , Temporal Muscle , Humans , Female , Longitudinal Studies , Adult , Temporal Muscle/physiology , Masseter Muscle/physiology , Muscle Contraction/physiology , Masticatory Muscles/physiology , Young Adult
2.
Bioorg Chem ; 109: 104662, 2021 04.
Article in English | MEDLINE | ID: mdl-33626452

ABSTRACT

Two new series of hitherto unknown dipeptides, containing an electrophilic nitrile or a non-electrophilic 2-amino-1,3,4-oxadiazole moiety were synthesized and evaluated in vitro as Cathepsin K (Cat K) inhibitors. From 14 compounds obtained, the oxadiazole derivatives 10a, 10b, 10e, and 10g acted as enzymatic competitive inhibitors with Ki values between 2.13 and 7.33 µM. Molecular docking calculations were carried out and demonstrated that all inhibitors performed hydrogen bonds with residues from the enzyme active site, such as Asn18. The best inhibitors (10a, 10b, 10g) could also perform these bonds with Cys25, and 10a showed the most stabilizing interaction energy (-134.36 kcal mol-1) with the active cavity. For the first time, derivatives based in 2-amino-1,3,4-oxadiazole scaffolds were evaluated, and the results suggested that this core displays a remarkable potential as a building block for Cat K inhibitors.


Subject(s)
Cathepsin K/antagonists & inhibitors , Dipeptides/pharmacology , Oxadiazoles/pharmacology , Binding Sites , Cell Survival/drug effects , Computer Simulation , Dipeptides/chemical synthesis , Dipeptides/chemistry , Drug Design , Human Umbilical Vein Endothelial Cells , Humans , Models, Molecular , Molecular Structure , Oxadiazoles/chemical synthesis , Oxadiazoles/chemistry , Protein Binding , Protein Conformation , Structure-Activity Relationship
3.
Eur J Med Genet ; 60(6): 326-334, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28396251

ABSTRACT

Mesenchymal stem cells (MSCs) are precursors present in adult bone marrow that are able to differentiate into osteoblasts, adipocytes and chondroblasts that have gained great importance as a source for cell therapy. Recently, a number of studies involving the analysis of gene expression of undifferentiated MSCs and of MSCs in the differentiation into multiple lineage processes were observed but there is no information concerning the gene expression of MSCs from Osteogenesis Imperfecta (OI) patients. Osteogenesis Imperfecta is characterized as a genetic disorder in which a generalized osteopenia leads to excessive bone fragility and severe bone deformities. The aim of this study was to analyze gene expression profile during osteogenic differentiation from BMMSCs (Bone Marrow Mesenchymal Stem Cells) obtained from patients with Osteogenesis Imperfecta and from control subjects. Bone marrow samples were collected from three normal subjects and five patients with OI. Mononuclear cells were isolated for obtaining mesenchymal cells that had been expanded until osteogenic differentiation was induced. RNA was harvested at seven time points during the osteogenic differentiation period (D0, D+1, D+2, D+7, D+12, D+17 and D+21). Gene expression analysis was performed by the microarray technique and identified several differentially expressed genes. Some important genes for osteoblast differentiation had lower expression in OI patients, suggesting a smaller commitment of these patient's MSCs with the osteogenic lineage. Other genes also had their differential expression confirmed by RT-qPCR. An increase in the expression of genes related to adipocytes was observed, suggesting an increase of adipogenic differentiation at the expense osteogenic differentiation.


Subject(s)
Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Osteogenesis Imperfecta/genetics , Adolescent , Adult , Case-Control Studies , Cells, Cultured , Female , Gene Expression Profiling , Humans , Male , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis Imperfecta/metabolism , Osteogenesis Imperfecta/pathology
4.
BMC Med Genet ; 17(1): 38, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27146342

ABSTRACT

BACKGROUND: Osteogenesis Imperfecta (OI) (OMIM %259450) is a heterogeneous group of inherited disorders characterized by increased bone fragility, with clinical severity ranging from mild to lethal. The majority of OI cases are caused by mutations in COL1A1 or COL1A2. Bruck Syndrome (BS) is a further recessively-inherited OI-like phenotype in which bone fragility is associated with the unusual finding of pterygia and contractures of the large joints. Notably, several studies have failed to show any abnormalities in the biosynthesis of collagen 1 in BS patientes. Evidence was obtained for a specific defect of the procollagen telopeptide lysine hydroxylation in BS, whereas mutations in the gene PLOD2 have been identified. Recently, several studies described FKBP10 mutations in OI-like and BS patients, suggesting that FKBP10 is a bonafide BS locus. METHODS: We analyzed the coding region and intron/exon boundaries of COL1A1, COL1A2, PLOD2 and FKBP10 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. Mononuclear cells obtained from the bone marrow of BS, OI patients and healthy donors were cultured and osteogenic differentiation was induced. The gene expression of osteoblast specific markers were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System. RESULTS: No mutations in COL1A1, COL1A2 or PLOD2 were found in BS patient. We found a homozygous 1-base-pair duplication (c.831dupC) that is predicted to produce a translational frameshift mutation and a premature protein truncation 17 aminoacids downstream (p.Gly278ArgfsX95). The gene expression of osteoblast specific markers BGLAP, COL1A1, MSX2, SPARC and VDR was evaluated by Real Time RT-PCR during differentiation into osteoblasts and results showed similar patterns of osteoblast markers expression in BS and healthy controls. On the other hand, when compared with OI patients, the expression pattern of these genes was found to be different. CONCLUSIONS: Our work suggests that the gene expression profiles observed during mesenchymal stromal cell differentiation into osteoblast are distinct in BS patients as compared to OI patients. The present study shows for the first time that genes involved in osteogenesis are differentially expressed in BS and OI patients.


Subject(s)
Arthrogryposis/genetics , Bone Marrow/pathology , Genetic Markers/genetics , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis Imperfecta/genetics , Adolescent , Adult , Cell Differentiation , Cells, Cultured , Child , Female , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Male , Osteogenesis , Sequence Analysis, DNA/methods , Young Adult
5.
BMC Med Genet ; 15: 45, 2014 Apr 27.
Article in English | MEDLINE | ID: mdl-24767406

ABSTRACT

BACKGROUND: The majority of Osteogenesis Imperfecta (OI) cases are caused by mutations in one of the two genes, COL1A1 and COL1A2 encoding for the two chains that trimerize to form the procollagen 1 molecule. However, alterations in gene expression and microRNAs (miRNAs) are responsible for the regulation of cell fate determination and may be evolved in OI phenotype. METHODS: In this work, we analyzed the coding region and intron/exon boundaries of COL1A1 and COL1A2 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. COL1A1 and miR-29b expression were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System. RESULTS: We have identified eight novel mutations, where of four may be responsible for OI phenotype. COL1A1 and miR-29b showed lower expression values in OI type I and type III samples. Interestingly, one type III OI sample from a patient with Bruck Syndrome showed COL1A1 and miR-29b expressions alike those from normal samples. CONCLUSIONS: Results suggest that the miR-29b mechanism directed to regulate collagen protein accumulation during mineralization is dependent upon the amount of COL1A1 mRNA. Taken together, results indicate that the lower levels observed in OI samples were not sufficient for the induction of miR-29b.


Subject(s)
Cell Differentiation/genetics , Collagen Type I/genetics , Gene Expression , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , Osteoblasts/metabolism , Osteogenesis Imperfecta/genetics , Adolescent , Adult , Collagen Type I, alpha 1 Chain , Exons , Female , Gene Order , Humans , Male , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology , Osteogenesis Imperfecta/diagnosis , Young Adult
6.
Org Lett ; 12(4): 716-9, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20095633

ABSTRACT

Bacterial acyl-homoserine lactones upregulated an uncharacterized gene cluster (bta) in Burkholderia thailandensis E264 to produce an uncharacterized polar antibiotic. The antibiotic is identified as a mixture of four bactobolins. Annotation of the bta cluster allows us to propose a biosynthetic scheme for bactobolin and reveals unusual enzymatic reactions for further study.


Subject(s)
Anti-Bacterial Agents/isolation & purification , Benzopyrans/isolation & purification , Burkholderia/metabolism , Quorum Sensing , Acyl-Butyrolactones/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Benzopyrans/chemistry , Benzopyrans/metabolism , Burkholderia/chemistry , Gene Expression Regulation, Bacterial , Humans
7.
Diagn Microbiol Infect Dis ; 57(1): 39-46, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16949244

ABSTRACT

We report 2 strategies to identify Brazilian vaccinia virus (VACV) isolates related to Cantagalo virus (CTGV) based on the amplification of the hemagglutinin (HA) gene by the polymerase chain reaction (PCR). One PCR protocol was combined with restriction analysis using the endonuclease SnaB I, generating a unique digestion pattern for CTGV amplicons. The restriction profile could identify 41 CTGV-related isolates in 43 clinical specimens and clearly differentiated them from other orthopoxviruses and strains of VACV. Alternatively, we used a 1-step PCR assay with primers that specifically targeted CTGV HA sequence. This protocol produced similar results more rapidly than the 1st strategy, eliminating post-PCR procedures. The results were supported by Western blot analysis of the viral protein profile in infected cells. Both PCR-based methods enabled a fast, sensitive, and cost-effective detection of new isolates of VACV related to CTGV directly from clinical samples without requiring virus isolation.


Subject(s)
Communicable Diseases, Emerging/virology , Hemagglutinins, Viral/genetics , Polymerase Chain Reaction/methods , Vaccinia virus/classification , Vaccinia virus/isolation & purification , Animals , Brazil , Cattle , Cattle Diseases/virology , DNA Primers , DNA, Viral/analysis , Deoxyribonucleases, Type II Site-Specific/metabolism , Humans , Vaccinia/virology , Vaccinia virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...