Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Braz J Microbiol ; 54(2): 629-636, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37055625

ABSTRACT

The study aimed to evaluate the clinical aspects, molecular identification, biofilm formation, and antifungal susceptibility profile of Candida species isolated from fungal keratitis. Thirteen Candida isolates from 13 patients diagnosed with Candida keratitis were retrieved and grown in pure culture. Species identification was performed by micromorphology analysis and ITS-rDNA sequencing. The broth microdilution method tested the minimum inhibitory concentration (MIC) of four antifungal drugs (fluconazole, amphotericin B, voriconazole, and anidulafungin). The biofilms were cultured and incubated with antifungal drugs for 24 h. The XTT reduction assay measured the biofilm activity. Biofilm MICs were calculated based on a 50% reduction in metabolic activity compared with the activity of the drug-free control. Among isolates, two were C. albicans, 10 were C. parapsilosis (sensu stricto), and one was C. orthopsilosis. All isolates were classified as susceptible or intermediate to all four antifungal drugs. Four isolates were very low biofilm producers (30%). Nine isolates were biofilm producers, and all biofilm samples were unsusceptible to all drugs tested. Previous ocular surgery was the most common underlying condition for fungal keratitis (84.6%), and C. parapsilosis was the most frequent Candida species (76.9%). Four patients (30.7%) needed keratoplasty, whereas two (15.3%) required evisceration. The biofilm formation ability of Candida isolates decreased antifungal susceptibility compared with planktonic cells. Despite in vitro antifungal susceptibility, almost half of the patients were unresponsive to clinical treatment and needed surgery.


Subject(s)
Antifungal Agents , Keratitis , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Amphotericin B/pharmacology , Candida parapsilosis/genetics , Keratitis/drug therapy , Candida albicans , Microbial Sensitivity Tests , Biofilms , Drug Resistance, Fungal
2.
Front Microbiol ; 10: 2573, 2019.
Article in English | MEDLINE | ID: mdl-31824443

ABSTRACT

The cell wall is an essential component in fungal homeostasis. The lack of a covering wall in human cells makes this component an attractive target for antifungal development. The host environment and antifungal stress can lead to cell wall modifications related to drug resistance. Antifungals targeting the cell wall including the new ß-D-glucan synthase inhibitor ibrexafungerp and glycosyl-phosphatidyl Inositol (GPI) anchor pathway inhibitor fosmanogepix are promising weapons against antifungal resistance. The fosmanogepix shows strong in vitro activity against the multidrug-resistant species Candida auris, Fusarium solani, and Lomentospora prolificans. The alternative carbon sources in the infection site change the cell wall ß-D-glucan and chitin composition, leading to echinocandin and amphotericin resistance. Candida populations that survive echinocandin exposure develop tolerance and show high chitin content in the cell wall, while fungal species such as Aspergillus flavus with a higher ß-D-glucan content may show amphotericin resistance. Therefore understanding fungal cell dynamics has become important not only for host-fungal interactions, but also treatment of fungal infections. This review summarizes recent findings regarding antifungal therapy and development of resistance related to the fungal cell wall of the most relevant human pathogenic species.

SELECTION OF CITATIONS
SEARCH DETAIL