Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 630: 122428, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36436741

ABSTRACT

Dapsone (DAP)is a dual-function drug substance; however, its limited water solubility may impair its bioavailability. Drug nanocrystals are an alternative to overcome this limitation. Herein, a DAP nanosuspension was prepared using adesign space approach aiming to investigate the influence of raw material properties and process parameters on the critical quality attributes of the drugnanocrystals. Optimized nanocrystals with 206.3 ± 6.7 nm using povacoat™ as stabilizer were made. The nanoparticles were characterized by dynamic light scattering, laser diffraction, scanning electron microscopy, differential scanning calorimetry, X-ray powder diffraction, and saturation solubility. Compared to the raw material, the nanocrystals were 250-times smaller. Meanwhile, its crystalline state remained basically unchanged even after milling and drying. The nanosuspension successfully maintained its physical stability inlong-termandaccelerated stability studiesover, 4 and 3 months. Furthermore, toxicity studiesshowed low a toxicity at a20 mg/kg. As expected for nanocrystals, the size reduction improvedsaturation solubility3.78 times in water. An attempt to scale up from lab to pilot scale resulted nanocrystals of potential commercial quality. In conclusion, the present study describes the development of dapsone nanocrystals for treating infectious and inflammatory diseases. The nanocrystal formuation can be scaled up for commercial use.


Subject(s)
Nanoparticles , Water , Particle Size , Water/chemistry , Dapsone , Solubility , Biological Availability , Nanoparticles/chemistry , X-Ray Diffraction , Calorimetry, Differential Scanning
2.
Int J Pharm ; 628: 122329, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36280220

ABSTRACT

Recently, the U.S. Food and Drug Administration (FDA) approved the first oral antiviral drug to treat mild to moderate cases of coronavirus disease. The combination of nirmatrelvir with an already used protease inhibitor class drug, ritonavir, has led to Paxlovid®. Several studies considered drug repositioning as the first trial for new drugs. The precise identification and quantification of polymorphs in raw materials and finished products are important to researchers involved in pharmaceutical development and quality control processes. In this work, we study the solid-state behavior of the antiretroviral drugs ritonavir and lopinavir in raw materials and in milled compositions. The results indicate that mixtures of ritonavir Forms I and II are found in different batches of raw materials from the same manufacturer; besides three equal crystalline samples, an amorphous batch was found in lopinavir. Furthermore, the milling process of the already amorphous lopinavir seems to facilitate the amorphization of ritonavir as well as the production of some unexpected crystalline forms of ritonavir. A phase transition of ritonavir Form I to Form II is only observed when co-milling with amorphous lopinavir. These findings reveal significant variations in phase purity of raw materials that affect the processing and solid-state properties, representing risks for the product quality.


Subject(s)
Coronavirus Infections , Ritonavir , Humans , Lopinavir/chemistry , Antiviral Agents , Coronavirus Infections/drug therapy , Drug Combinations
SELECTION OF CITATIONS
SEARCH DETAIL
...