Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 913728, 2022.
Article in English | MEDLINE | ID: mdl-35837551

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated gene (Cas) system and RNA interference (RNAi)-based non-transgenic approaches are powerful technologies capable of revolutionizing plant research and breeding. In recent years, the use of these modern technologies has been explored in various sectors of agriculture, introducing or improving important agronomic traits in plant crops, such as increased yield, nutritional quality, abiotic- and, mostly, biotic-stress resistance. However, the limitations of each technique, public perception, and regulatory aspects are hindering its wide adoption for the development of new crop varieties or products. In an attempt to reverse these mishaps, scientists have been researching alternatives to increase the specificity, uptake, and stability of the CRISPR and RNAi system components in the target organism, as well as to reduce the chance of toxicity in nontarget organisms to minimize environmental risk, health problems, and regulatory issues. In this review, we discuss several aspects related to risk assessment, toxicity, and advances in the use of CRISPR/Cas and topical RNAi-based technologies in crop management and breeding. The present study also highlights the advantages and possible drawbacks of each technology, provides a brief overview of how to circumvent the off-target occurrence, the strategies to increase on-target specificity, the harm/benefits of association with nanotechnology, the public perception of the available techniques, worldwide regulatory frameworks regarding topical RNAi and CRISPR technologies, and, lastly, presents successful case studies of biotechnological solutions derived from both technologies, raising potential challenges to reach the market and being social and environmentally safe.

2.
Gene ; 810: 146055, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34737003

ABSTRACT

Water stress drastically hinders crop yield, including soybean - one of the world's most relevant feeding crops - threatening the food security of an ever-growing global population. Hemoglobins (GLBs) are involved in water stress tolerance; however, the role they effectively play in soybean remains underexplored. In this study, in silico and in vivo analyses were performed to identify soybean GLBs, capture their transcriptional profile under water stress, and overexpress promising members to assess how soybean cope with waterlogging. Seven GLBs were found, two GLB1 (non-symbiotic) and five GLB2 (symbiotic or leghemoglobins). Three out of the seven GLBs were differentially expressed in soybean RNA-seq libraries of water stress and were evaluated by real-time PCR. Consistently, GmGLB1-1 and GmGLB1-2 were moderately and highly expressed under waterlogging, respectively. Composite plants with roots overexpressing GmGLB1-1 or GmGLB1-2 (mostly) showed higher transcript abundance of stress-defensive genes involved in anaerobic, nitrogen, carbon, and antioxidant metabolism when subjected to waterlogging. In addition, soybean bearing p35S:GmGLB1-2 had lower H2O2 root content, a reactive oxygen species (ROS), under water excess compared with the control condition. Altogether these results suggest that GmGLB1-2 is a strong candidate for soybean genetic engineering to generate waterlogging-tolerant soybean cultivars.


Subject(s)
Glycine max/genetics , Hemoglobins/genetics , Plant Proteins/genetics , Gene Expression , Genome, Plant , Hemoglobins/metabolism , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism , Glycine max/physiology , Stress, Physiological , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...