Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JACC Case Rep ; 7: 101722, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36776793

ABSTRACT

In the following case series, we describe the clinical presentation of 2 patients with myocardial infarction with nonobstructive coronary arteries with different underlying pathophysiologic mechanisms. In both scenarios, cardiac magnetic resonance (CMR) imaging provided comprehensive tissue characterization with both conventional parametric mapping techniques and CMR fingerprinting. These cases demonstrate the diagnostic utility for CMR to elucidate the underlying etiology and appropriate therapeutic strategy. (Level of Difficulty: Advanced.).

2.
Magn Reson Med ; 87(6): 2757-2774, 2022 06.
Article in English | MEDLINE | ID: mdl-35081260

ABSTRACT

PURPOSE: Develop a novel 2D cardiac MR fingerprinting (MRF) approach to enable simultaneous T1, T2, T2*, and fat fraction (FF) myocardial tissue characterization in a single breath-hold scan. METHODS: Simultaneous, co-registered, multi-parametric mapping of T1, T2, and FF has been recently achieved with cardiac MRF. Here, we further incorporate T2* quantification within this approach, enabling simultaneous T1, T2, T2*, and FF myocardial tissue characterization in a single breath-hold scan. T2* quantification is achieved with an eight-echo readout that requires a long cardiac acquisition window. A novel low-rank motion-corrected (LRMC) reconstruction is exploited to correct for cardiac motion within the long acquisition window. The proposed T1/T2/T2*/FF cardiac MRF was evaluated in phantom and in 10 healthy subjects in comparison to conventional mapping techniques. RESULTS: The proposed approach achieved high quality parametric mapping of T1, T2, T2*, and FF with corresponding normalized RMS error (RMSE) T1 = 5.9%, T2 = 9.6% (T2 values <100 ms), T2* = 3.3% (T2* values <100 ms), and FF = 0.8% observed in phantom scans. In vivo, the proposed approach produced higher left-ventricular myocardial T1 values than MOLLI (1148 vs 1056 ms), lower T2 values than T2-GraSE (42.8 vs 50.6 ms), lower T2* values than eight-echo gradient echo (GRE) (35.0 vs 39.4 ms), and higher FF values than six-echo GRE (0.8 vs 0.3 %) reference techniques. The proposed approach achieved considerable reduction in motion artifacts compared to cardiac MRF without motion correction, improved spatial uniformity, and statistically higher apparent precision relative to conventional mapping for all parameters. CONCLUSION: The proposed cardiac MRF approach enables simultaneous, co-registered mapping of T1, T2, T2*, and FF in a single breath-hold for comprehensive myocardial tissue characterization, achieving higher apparent precision than conventional methods.


Subject(s)
Heart , Magnetic Resonance Imaging , Breath Holding , Heart/diagnostic imaging , Humans , Myocardium , Phantoms, Imaging , Reproducibility of Results
3.
Magn Reson Med ; 81(6): 3705-3719, 2019 06.
Article in English | MEDLINE | ID: mdl-30834594

ABSTRACT

PURPOSE: To develop a new high-dimensionality undersampled patch-based reconstruction (HD-PROST) for highly accelerated 2D and 3D multi-contrast MRI. METHODS: HD-PROST jointly reconstructs multi-contrast MR images by exploiting the highly redundant information, on a local and non-local scale, and the strong correlation shared between the multiple contrast images. This is achieved by enforcing multi-dimensional low-rank in the undersampled images. 2D magnetic resonance fingerprinting (MRF) phantom and in vivo brain acquisitions were performed to evaluate the performance of HD-PROST for highly accelerated simultaneous T1 and T2 mapping. Additional in vivo experiments for reconstructing multiple undersampled 3D magnetization transfer (MT)-weighted images were conducted to illustrate the impact of HD-PROST for high-resolution multi-contrast 3D imaging. RESULTS: In the 2D MRF phantom study, HD-PROST provided accurate and precise estimation of the T1 and T2 values in comparison to gold standard spin echo acquisitions. HD-PROST achieved good quality maps for the in vivo 2D MRF experiments in comparison to conventional low-rank inversion reconstruction. T1 and T2 values of white matter and gray matter were in good agreement with those reported in the literature for MRF acquisitions with reduced number of time point images (500 time point images, ~2.5 s scan time). For in vivo MT-weighted 3D acquisitions (6 different contrasts), HD-PROST achieved similar image quality than the fully sampled reference image for an undersampling factor of 6.5-fold. CONCLUSION: HD-PROST enables multi-contrast 2D and 3D MR images in a short acquisition time without compromising image quality. Ultimately, this technique may increase the potential of conventional parameter mapping.


Subject(s)
Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods , Adult , Algorithms , Brain/diagnostic imaging , Female , Humans , Male , Phantoms, Imaging
4.
Magn Reson Med ; 81(6): 3530-3543, 2019 06.
Article in English | MEDLINE | ID: mdl-30720209

ABSTRACT

PURPOSE: Develop a sparse and locally low rank (LLR) regularized reconstruction to accelerate MR fingerprinting (MRF). METHODS: Recent works have introduced low rank reconstructions to MRF, based on temporal compression operators learned from the MRF dictionary. In other MR applications, LLR regularization has been introduced to exploit temporal redundancy in local regions of the image. Here, we propose to include spatial sparsity and LLR regularization terms in the MRF reconstruction. This approach, so called SLLR-MRF, further reduces aliasing in the time-point images and enables higher acceleration factors. The proposed approach was evaluated in simulations, T1 /T2 phantom acquisition, and in vivo brain acquisitions in 5 healthy subjects with different undersampling factors. Acceleration was also used in vivo to enable acquisitions with higher in-plane spatial resolution in comparable scan time. RESULTS: Simulations, phantom, and in vivo results show that low rank MRF reconstructions with high acceleration factors (<875 time-point images, 1 radial spoke per time-point) have residual aliasing artifacts that propagate into the parametric maps. The artifacts are reduced with the proposed SLLR-MRF resulting in considerable improvements in precision, without changes in accuracy. In vivo results show improved parametric maps for the proposed SLLR-MRF, potentially enabling MRF acquisitions with 1 radial spoke per time-point in approximately 2.6 s (~600 time-point images) for 2 × 2 mm and 9.6 s (1750 time-point images) for 1 × 1 mm in-plane resolution. CONCLUSION: The proposed SLLR-MRF reconstruction further improves parametric map quality compared with low rank MRF, enabling shorter scan times and/or increased spatial resolution.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Artifacts , Brain/diagnostic imaging , Computer Simulation , Humans , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...