Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Divers ; 26(4): 1969-1982, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34482477

ABSTRACT

Giardiasis is a neglected disease, and there is a need for new molecules with less side effects and better activity against resistant strains. This work describes the evaluation of the giardicidal activity of thymol derivatives produced from the Morita-Baylis-Hillman reaction. Thymol acrylate was reacted with different aromatic aldehydes, using 1,4-diazabicyclo[2.2.2]octane (DABCO) as a catalyst. Eleven adducts (8 of them unpublished) with yields between 58 and 80% were obtained from this reaction, which were adequately characterized. The in silico prediction showed theoretical bioavailability after oral administration as well as antiparasitic activity against Giardia lamblia. Compound 4 showed better biological activity against G. lamblia. In addition to presenting antigiardial activity 24 times better than thymol, this MBHA was obtained in a short reaction time (3 h) with a yield (80%) superior to the other investigated molecules. The molecule was more active than the precursors (thymol and MBHA 12) and did not show cytotoxicity against HEK-293 or HT-29 cells. In conclusion, this study presents a new class of drugs with better antigiardial activity in relation to thymol, acting as a basis for the synthesis of new bioactive molecules. Molecular hybridization technique combined with the Morita-Baylis-Hillman reaction provided new thymol derivatives with giardicidal activity superior to the precursor molecules.


Subject(s)
Giardia lamblia , Thymol , Aldehydes , Catalysis , HEK293 Cells , Humans , Thymol/pharmacology
2.
Mol Divers ; 24(1): 265-281, 2020 Feb.
Article in English | MEDLINE | ID: mdl-30955150

ABSTRACT

Quaternary or spirocyclic 3-substituted-3-hydroxy-2-oxindole is considered a privileged scaffold. In other words, it is a molecular core present on several compounds with a wide spectrum of biological activities. Among its precursors, activated ketones (isatin nucleus) can be used as interesting starting points to Morita-Baylis-Hillman adducts derivatives, a class of compounds with good cytotoxic potential. In this paper, we present the synthesis, anti-proliferative activity against lung cancer cell line and a theoretical conformational study of 21 of Morita-Baylis-Hillman adducts from isatin derivatives, by DFT quantum chemical calculations, followed by a SAR and QSAR analysis. Besides, an efficient synthetic protocol and good biological activity profile were highlighted interesting observations about 1H NMR experimental spectra, molecular modeling results and crystallographic data available.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chemistry Techniques, Synthetic , Isatin/chemistry , Isatin/pharmacology , Models, Theoretical , Proton Magnetic Resonance Spectroscopy , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Isatin/analogs & derivatives , Isatin/chemical synthesis , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship
3.
Parasitol Res ; 118(10): 3067-3076, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31392413

ABSTRACT

This study is a report on the anti-Leishmania activity of Morita-Baylis-Hillman (MBH) homodimers adducts against the promastigote and axenic amastigote forms of Leishmania (Leishmania) infantum and Leishmania (Leishmania) amazonensis and on the cytotoxicity of these adducts to human blood cells. Both studied homodimers, MBH 1 and MBH 2, showed activity against the promastigote forms of L. infantum and L. amazonensis, which are responsible for visceral and cutaneous leishmaniasis, respectively. Additionally, the homodimers presented biological activity against the axenic amastigote forms of these two Leishmania species. The adducts exhibited no hemolytic activity to human peripheral blood mononuclear cells or erythrocytes at the tested concentrations and achieved higher selectivity indices than amphotericin B. Evaluation of cell death by apoptosis revealed that the homodimers had better apoptosis/necrosis profiles than amphotericin B in the promastigote forms of both L. infantum and L. amazonensis. In conclusion, these Morita-Baylis-Hillman adducts had anti-Leishmania activity in an in vitro model and may thus be promising molecules in the search for new drugs to treat leishmaniasis.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Leishmania/drug effects , Amphotericin B/pharmacology , Animals , Antiprotozoal Agents/chemistry , Apoptosis/drug effects , Dimerization , Drug Evaluation, Preclinical , Hemolysis , Humans , Leishmania/growth & development
4.
Mediators Inflamm ; 2017: 6898505, 2017.
Article in English | MEDLINE | ID: mdl-28785138

ABSTRACT

Inflammatory response plays an important role not only in the normal physiology but also in pathologies such as cancers. The Morita-Baylis-Hillman adducts (MBHA) are a novel group of synthetic molecules that have demonstrated many biological activities against some parasitic cells such as Plasmodium falciparum, Leishmania amazonensis, and Leishmania chagasi, and antimitotic activity against sea urchin embryonic cells was also related. However, little is known about the mechanisms induced by MBHA in inflammatory process and its relation with anticancer activity. The present work investigated the cytotoxicity of three MBHA derivatives (A2CN, A3CN, and A4CN), on human colorectal adenocarcinoma, HT-29 cells, and their anti-inflammatory activities were examined in lipopolysaccharide- (LPS-) stimulated RAW264.7 macrophage cells, being these derivatives potentially cytotoxic to HT-29 cells. Coincubation with A2CN, A3CN, or A4CN and LPS in RAW264.7 cells inhibited NO production, as well as the production of reactive oxygen species (ROS) was also repressed. The mRNA expressions of IL-1ß and IL-6 were significantly downregulated by such MBHA compounds in RAW264.7 cells, but only A2CN was able to inhibit the COX-2 gene expression. We also showed that MBHA compounds decreased almost to zero the production of IL-1ß and IL-6. These findings display that such MBHA compounds exhibit anticancer and anti-inflammatory activities.


Subject(s)
Leishmania/immunology , Plasmodium falciparum/immunology , Animals , Cyclooxygenase 2/metabolism , HT29 Cells , Humans , Interleukin-6/metabolism , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Mice , Peptide Fragments/pharmacology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 26(18): 4523-4526, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27520941

ABSTRACT

It is reported here the synthesis of novel Homodimers 12-19 of Morita-Baylis-Hillman adducts (MBHA) from one-pot Morita-Baylis-Hillman Reaction (MBHR) between aromatic aldehydes as eletrophiles and ethylene glycol diacrylate as Michael acceptor (35-94% yields) using cheap and green conditions. The bioactivities were evaluated against promastigote form of Leishmania donovani. All homodimers showed to be more potent than corresponding monomers. It is worth highlighting that the halogenated homodimers 17 and 18 (0.50µM) is almost 400 times more active than the corresponding monomer 10 and 1.24 times more potent than the second-line drug amphotericin B (0.62µM). Moreover, the selectivity index to 18 is very high (SIrb>400) far better than amphotericin B (SIrb=18.73). This is the first report of twin drugs strategy applied on Morita-Baylis-Hillman adducts.


Subject(s)
Antiprotozoal Agents/chemical synthesis , Antiprotozoal Agents/pharmacology , Leishmania donovani/drug effects , Animals , Antiprotozoal Agents/chemistry , Dimerization , Hemolysis/drug effects , Humans
6.
PLoS One ; 9(4): e93936, 2014.
Article in English | MEDLINE | ID: mdl-24714638

ABSTRACT

Chagas disease, caused by the protozoan Trypanosoma cruzi, remains a serious health concern due to the lack of effective vaccines or satisfactory treatment. In the search for new compounds against this neglected disease, we have previously demonstrated that the compound 3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile) (MBHA3), derived from the Morita-Baylis-Hillman reaction, effectively caused a loss of viability in both the epimastigote and trypomastigote forms. However, the mechanisms of parasite death elicited by MBHA3 remain unknown. The aim of this study was to better understand the morphophysiological changes and the mechanism of cell death induced by MBHA3 treatment on T. cruzi. To perform this analysis, we used confocal microscopy and flow cytometry to monitor the fluorescent probes such as annexin-V/propidium iodide (AV/PI), calcein-AM/ethidium homodimer (CA/EH), acridine orange (AO) and rhodamine 123 (Rho 123). Lower concentrations of MBHA3 led to alterations in the mitochondrial membrane potential and AO labeling, but did not decrease the viability of the epimastiogote forms, as determined by the CA/EH and AV/PI assays. Conversely, treatment with higher concentrations of MBHA3 led to extensive plasma membrane damage, loss of mitochondrion membrane potential, DNA fragmentation and acidification of the cytoplasm. Our findings suggest that at higher concentrations, MBHA3 induces T. cruzi epimastigote death by necrosis in a mitochondrion-dependent manner.


Subject(s)
Acrylonitrile/analogs & derivatives , Benzyl Alcohols/pharmacology , Cell Death/drug effects , Chagas Disease/drug therapy , Trypanosoma cruzi/drug effects , Acrylonitrile/pharmacology , Acrylonitrile/therapeutic use , Benzyl Alcohols/therapeutic use , Cell Membrane/drug effects , Chagas Disease/parasitology , Cytoplasm/drug effects , Membrane Potential, Mitochondrial/drug effects , Microscopy, Confocal , Nitriles
7.
Bioorg Med Chem ; 20(13): 3954-71, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22632793

ABSTRACT

This review aims to present by the first time the Morita-Baylis-Hillman adducts (MBHA) as a new class of bioactive compounds and highlight its potentialities to the discovery of new cheaper and efficient drugs. Now, most these compounds can be prepared fast and on a single synthetic step (one-pot reaction) in high yields and using ecofriendly synthetic protocols. We highlight here the aromatic MBHA, which have shown diverse biological activities as anti-Leishmania chagasi and Leishmania amazonensis (parasites that cause cutaneous and visceral leishmaniasis), anti-Trypanosoma cruzi (parasite that cause Chagas disease), anti-Plasmodium falciparum and Plasmodium berghei (parasites that cause malaria), lethal against Biomphalaria glabrata (the snail transmitter of schistosomiasis), antibacterial, antifungal, herbicide and actives against some human tumor cell lines. Understanding of the biological mechanisms of action of this new class of molecules is still in the infancy stage. However, we report here which has been described to date on the possibilities of biological mechanisms of action, and we present new analyzes based on literature in this area. The academic and industrial interest in selecting green and cheaper experiments to the drugs development has been the prime mover of the growth on the subject.


Subject(s)
Antiparasitic Agents/chemistry , Antiparasitic Agents/economics , Animals , Antiparasitic Agents/chemical synthesis , Antiparasitic Agents/pharmacology , Green Chemistry Technology , Humans , Leishmania/drug effects , Plasmodium falciparum/drug effects , Structure-Activity Relationship , Trypanosoma cruzi/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...