Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 3: 2990, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-24141899

ABSTRACT

The magnetically driven metal-insulator transition (MIT) was predicted by Slater in the fifties. Here a long-range antiferromagnetic (AF) order can open up a gap at the Brillouin electronic band boundary regardless of the Coulomb repulsion magnitude. However, while many low-dimensional organic conductors display evidence for an AF driven MIT, in three-dimensional (3D) systems the Slater MIT still remains elusive. We employ terahertz and infrared spectroscopy to investigate the MIT in the NaOsO3 3D antiferromagnet. From the optical conductivity analysis we find evidence for a continuous opening of the energy gap, whose temperature dependence can be well described in terms of a second order phase transition. The comparison between the experimental Drude spectral weight and the one calculated through Local Density Approximation (LDA) shows that electronic correlations play a limited role in the MIT. All the experimental evidence demonstrates that NaOsO3 is the first known 3D Slater insulator.

2.
Nat Nanotechnol ; 8(8): 556-60, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23872838

ABSTRACT

Plasmons are quantized collective oscillations of electrons and have been observed in metals and doped semiconductors. The plasmons of ordinary, massive electrons have been the basic ingredients of research in plasmonics and in optical metamaterials for a long time. However, plasmons of massless Dirac electrons have only recently been observed in graphene, a purely two-dimensional electron system. Their properties are promising for novel tunable plasmonic metamaterials in the terahertz and mid-infrared frequency range. Dirac fermions also occur in the two-dimensional electron gas that forms at the surface of topological insulators as a result of the strong spin-orbit interaction existing in the insulating bulk phase. One may therefore look for their collective excitations using infrared spectroscopy. Here we report the first experimental evidence of plasmonic excitations in a topological insulator (Bi2Se3). The material was prepared in thin micro-ribbon arrays of different widths W and periods 2W to select suitable values of the plasmon wavevector k. The linewidth of the plasmon was found to remain nearly constant at temperatures between 6 K and 300 K, as expected when exciting topological carriers. Moreover, by changing W and measuring the plasmon frequency in the terahertz range versus k we show, without using any fitting parameter, that the dispersion curve agrees quantitatively with that predicted for Dirac plasmons.

3.
Rev Sci Instrum ; 84(2): 022703, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23464185

ABSTRACT

The linac driven coherent THz radiation source at the SPARC-LAB test facility is able to deliver broadband THz pulses with femtosecond shaping. In addition, high peak power, narrow spectral bandwidth THz radiation can be also generated, taking advantage of advanced electron beam manipulation techniques, able to generate an adjustable train of electron bunches with a sub-picosecond length and with sub-picosecond spacing. The paper reports on the manipulation, characterization, and transport of the electron beam in the bending line transporting the beam down to the THz station, where different coherent transition radiation spectra have been measured and studied with the aim to optimize the THz radiation performances.

4.
Phys Rev Lett ; 105(7): 077002, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20868070

ABSTRACT

The optical conductivity σ(ω) and the spectral weight W(T) of two superconducting cuprates at optimum doping, Bi2Sr2-xLaxCuO6 and Bi2Sr2CaCu2O8, have been first measured up to 500 K. Above 300 K, W(T) deviates from the usual T2 behavior in both compounds, even though σ(ω→0) remains larger than the Ioffe-Regel limit. The deviation is surprisingly well described by the T4 term of the Sommerfeld expansion, but its coefficients are enhanced by strong correlation, as shown by the good agreement with dynamical mean field calculations.

5.
Phys Rev Lett ; 102(20): 206409, 2009 May 22.
Article in English | MEDLINE | ID: mdl-19519052

ABSTRACT

By studying the optical conductivity of Bi(2)Sr(2-x)La(x)CuO(6) and Y(0.97)Ca(0.03)Ba(2)Cu(3)O(6), we show that the metal-to-insulator transition in these hole-doped cuprates is driven by the opening of a small gap at low T in the far infrared. Its width is consistent with the observations of angle-resolved photoemission spectroscopy in other cuprates, along the nodal line of the k space. The gap forms as the Drude term turns into a far-infrared absorption, whose peak frequency can be approximately predicted on the basis of a Mott-like transition. Another band in the midinfrared softens with doping but is less sensitive to the metal-to-insulator transition.

SELECTION OF CITATIONS
SEARCH DETAIL
...